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A B S T R A C T

This study uses advanced machine learning models to investigate the radiation hardening behaviour of reduced 
activation ferritic martensitic (RAFM) steels. An extensive dataset spanning nearly four decades (1985 to 2024) 
and covering various steel series, including Eurofer97, F82H, T91, OPTIFER, JLM, JLF, and CLAM, was exten
sively analysed. Multiple models, including Gradient Boosting Decision Trees (GBDT), XGBoost, Random Forests 
(RF), ResMLP, and One-Dimensional Convolutional Neural Networks (1D-CNN), were employed with hyper
parameter optimisation to maximise predictive accuracy. Among these models, GBDT achieved the highest ac
curacy (R2: 0.87). The findings reveal significant impacts from elements like Ta, W, and Cr, as well as test 
temperature and irradiation dose. Radiation hardening peaks at 315 ◦C due to increased dislocation loops and 
precipitates but declines above 375 ◦C as these features diminish and martensitic laths recover, softening the 
steel. The hardening response to radiation dose shows an increase up to 20 dpa, a slight decrease between 20–35 
dpa, and stabilising thereafter. Additionally, W and Cr enhance radiation hardening up to 375 ◦C, with Cr 
exhibiting a stronger effect, while Ta is observed to mitigate hardening. These insights contribute to a deeper 
understanding of radiation effects on RAFM steels, offering a predictive framework for material design and 
optimisation in nuclear environments. This work highlights machine learning as a powerful tool for advancing 
materials science and enhancing predictive capability for radiation behaviour in steels.

1. Introduction

Reduced-activation ferritic martensitic (RAFM) steels, known for 
their excellent mechanical properties, have become key materials for 
fusion reactors. However, these steels undergo radiation hardening in 
such environments, significantly affecting their mechanical properties 
and limiting their service life. Radiation hardening occurs when the 
internal microstructure of the material changes under high-energy ra
diation (e.g., neutron irradiation), leading to an increase in strength and 
brittleness. This phenomenon shortens the operational window of RAFM 
steels [1–8] with the lower limit of the operating temperature being 
determined by the peak temperature of radiation hardening.

Research has extensively explored the mechanisms behind radiation 
hardening in RAFM steels. It was discovered that radiation causes de
fects such as voids and interstitial atoms [9–11] which hinder disloca
tion movement and increase steel strength. Additionally, carbides and 
second-phase precipitates form during irradiation, further obstructing 

dislocation [12–14]. These carbides have the highest density around 
300 ◦C and gradually decrease at higher temperatures [13] explaining 
the peak in radiation hardening. Advancements in characterisation 
techniques also revealed the presence of dislocation loops during irra
diation [15–20] which vary in size with irradiation temperature and 
dose [21–24], disappearing above certain temperatures [25,26].

Despite extensive research, the mechanisms of radiation hardening 
remain complex and not fully understood. Radiation experiments are 
time-consuming, costly, and risky [27], leading to insufficient data and 
hindering a comprehensive understanding of radiation hardening 
mechanisms. Consequently, researchers have turned to modelling to 
predict radiation hardening values. Initial models, such as the empirical 
formula by Dubinko et al., [28] and its refinement by Kotrechko et al., 
[29] considered factors like dislocation loop density and precipitates but 
had limitations in applicability. To overcome these challenges, re
searchers have increasingly turned to simulation-based methods. For 
instance, Deo et al., [30] used the VPSC model to simulate radiation 
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hardening in ferritic steels, successfully reproducing experimental data. 
However, the model relies heavily on input parameters such as defect 
density and size, often derived from limited experimental data. It also 
assumes uniform defect distributions and does not fully address the 
coupling between atomic-scale defects and macroscopic properties, 
limiting its predictive capability. Similarly, Kumar et al., [31] employed 
a multi-scale approach combining MD and DD simulations to model 
radiation hardening in Fe-Cr alloys. While this method effectively links 

nano- and meso-scale phenomena, it depends on experimental data for 
defect characteristics and assumes idealised conditions, such as uniform 
defect distributions. These limitations and the challenges in multi-scale 
integration constrain its accuracy and generality. Therefore, a reliable 
method is needed to analyse and predict radiation-hardening behaviour.

Machine learning (ML), a subset of artificial intelligence, has revo
lutionised data-driven analysis in materials science. By uncovering 
intrinsic relationships within complex datasets, ML offers predictive 

Fig. 1. Flowchart of methodology.
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capabilities that are especially useful in scenarios where experimental 
data are scarce or noisy. Over the past two decades, ML has been suc
cessfully applied to various challenges in materials science, including 
predicting corrosion resistance, optimising additive manufacturing 
processes, and modelling phase transformations [32–34]. For example, 
Stewart et al., [35] applied machine learning to predict radiation- 
induced defect behaviours using regression-based surrogate models. 
Korotaev et al., [36] used a neural network to predict radiation swelling 
in austenitic steels, achieving a 1.8 % mean absolute error and aligning 
well with experimental data. Kemp et al., [37] used an artificial neural 
network model to predict the radiation hardening, capturing nonlinear 
dependencies of yield strength on chemical composition and irradiation 
parameters. However, the model’s accuracy was limited. Windsor et al., 
[38] built on Kemp et al.’s work by predicting yield stress at high irra
diation levels using simpler neural network models and target-driven 
dimensionality reduction, achieving good accuracy but still falling 
short of desired levels for broader applications.

Despite progress, existing models need further refinement in accu
racy. Additionally, previous studies mainly focused on overall trends of 
radiation hardening, without examining the specific effects of different 
compositions and experimental conditions. This paper addresses these 
gaps by employing ensemble and neural network-based algorithms, 
incorporating a unique hyperparameter optimisation method to 
improve prediction accuracy and mitigate overfitting. Furthermore, we 
rigorously validated the model to ensure its accuracy and reliability, 
using it to investigate the differences in radiation hardening among 
various RAFM steels and explore the impact of different elements on 
radiation hardening. This study fills a gap in the existing literature, 
providing new insights for the design and application of RAFM steels in 
the future.

2. Computational methodology

The methodology is summarised in the flowchart as shown in Fig. 1. 
A systematic literature review was conducted to compile a dataset of 
1866 data points with 27 variables, meticulously constructed from 
various academic papers and technical reports spanning 1985 to 2024, 
The dataset, shown in the top section of Fig. 1, includes reduced- 
activation steels such as Eurofer97, F82H, T91, OPTIFER, JLM, JLF, 
and CLAM. The variables encompass chemical elements, including 
Carbon (C), Chromium (Cr), Tungsten (W), Molybdenum (Mo), 
Tantalum (Ta), Vanadium (V), Silicon (Si), Manganese (Mn), Nitrogen 
(N), Aluminium (Al), Arsenic (As), Boron (B), Cobalt (Co), Copper (Cu), 
Oxygen (O), Phosphorus (P), Titanium (Ti), and Zirconium (Zr). Addi
tionally, it includes irradiation conditions such as Irradiation Dose 
(Dose), Helium Production (He), and Irradiation Temperature (Tirr), 
along with the corresponding Yield Stress values, Fig. 1, displays the 
distribution of some of these variables. A detailed description of the 
dataset and its collection process can be found in the supplementary 
material under “Data Collection and Description”.

The subsequent data cleaning and preprocessing steps involved 
consolidating the data, handling missing values, detecting and 
addressing outliers, and standardising the dataset. As shown in the 
second section of Fig. 1, a boxplot was created, and outliers were 
removed using the IQR method. Detailed data preprocessing methods 
can be found in the supplementary material under “Data Preprocessing”.

To develop a predictive model for the yield strength of low- 
activation steels based on their chemical compositions and radiation 
conditions, we evaluated several machine learning and deep learning 
models to explore a diverse range of approaches. The tree-based models 
included Gradient Boosting Decision Trees (GBDT), Random Forest (RF), 
and XGBoost, which are well-suited for tabular data and are capable of 
capturing non-linear relationships. GBDT served as the benchmark due 
to its consistent performance in predictive tasks, while RF and XGBoost 
provided valuable comparisons with their ensemble learning and regu
larisation strengths, respectively. In addition, we explored advanced 

neural network architectures to evaluate their applicability in this 
domain. The Residual Multi-Layer Perceptron (ResMLP) was chosen for 
its incorporation of residual connections, which improve gradient flow 
and enable the training of deeper networks, and layer normalisation, 
which stabilises training. ResMLP has demonstrated competitive per
formance on tabular data in recent research [39,40], making it a suitable 
candidate for this study. Furthermore, a one-dimensional Convolutional 
Neural Network (1D-CNN) was employed to investigate whether local 
feature interactions, such as those among alloy compositions and radi
ation conditions, could enhance predictions. The convolutional layers of 
the 1D-CNN enable the model to capture such dependencies that may 
not be evident to tree-based methods.

Following this, for the neural network algorithms (such as ResMLP 
and 1D-CNN), we use grid search for hyperparameter optimisation due 
to the complexity and interdependence of their hyperparameters. Grid 
search allows for a comprehensive exploration of various parameter 
combinations to identify the optimal configuration. In contrast, for the 
ensemble algorithms, such as GBDT, XGBoost, and RF, we manually 
selected the three most critical hyperparameters for each model to 
optimise the process, thereby avoiding the inefficiencies and overfitting 
risks associated with automated methods. The contour plot on the left 
side of the second section in Fig. 1 illustrates the parameter optimisation 
process using this method. The specific hyperparameter optimisation 
methods can be found in the supplementary material under the section 
“Hyperparameter Optimisation”. Once the optimal hyperparameters 
were identified, six models were trained. The trained optimal model was 
then used to validate experimental results from the literature. We 
ensured the reliability of this validation through data splitting, model 
prediction, and performance evaluation. Subsequently, we conducted a 
feature importance analysis to identify the contribution of each input 
variable to the prediction of radiation hardening. The third section of 
Fig. 1 sequentially illustrates the process of model training, feature 
importance ranking, and model validation.

Finally, based on the model prediction results and the feature 
importance analysis, we performed a detailed examination of the vari
ables with significant weights to investigate their specific impact 
mechanisms on radiation hardening. As shown in the final section of 
Fig. 1, polar coordinate charts were used to visualise the impact of 
variables on radiation hardening in reduced-activation steels. Through 
this systematic process, our research aims to comprehensively identify 
the key factors and mechanisms influencing radiation hardening in 
RAFM steels. This work provides theoretical support for material design 
and optimisation.

3. Results and discussion

3.1. Model training and selection

Based on the findings from the Hyperparameter Optimisation sec
tion, the optimal hyperparameters were identified and subsequently 
applied to train the models. During this optimisation process, XGBoost 
exhibited overfitting on the dataset; therefore, the training was limited 
to the remaining four models: GBDT, RF, ResMLP, and 1D-CNN. The 
results are presented in Fig. 2, where (a) shows the GBDT model’s pre
dictions, (b) the results of the RF model, (c) the ResMLP model, and (d) 
the 1D-CNN model.

The scatter plots compare the predictions of Yield Stress (MPa) 
against the actual values. The red dashed lines represent the range of 
allowable prediction error, providing a visual measure of how well each 
model aligns with the actual values. Points falling within the red lines 
indicate that the predictions are within the acceptable error range, while 
points outside the red lines reflect greater prediction deviations. This 
enables a clearer assessment of each model’s prediction accuracy and 
reliability.

For the GBDT model, the predictions align closely with the actual 
values, indicated by the majority of points falling within the red dashed 
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lines. The model demonstrates strong performance with an RMSE of 
73.8, a PCC of 0.93, and an R2 of 0.87. These metrics reflect a low 
prediction error, a robust positive correlation, and that 87 % of the 
variability in Yield Stress is explained by the model. Furthermore, the 
limited number of points outside the red dashed lines suggests a high 
degree of reliability in the predictions.

The RF model also shows good alignment, with most points falling 
within the red dashed lines, though it exhibits a slightly greater scatter 
compared to the GBDT model. It achieved an RMSE of 77.5, a PCC of 
0.92, and an R2 of 0.85, indicating a low average prediction error and a 
strong correlation, explaining 85 % of the variability. The few points 
outside the red dashed lines highlight areas where the model shows 
minor prediction deviations.

For ResMLP in (c), the results show an RMSE of 87.1, a PCC of 0.90, 
and an R2 of 0.81. This indicates better performance than LSTM but still 
falls short of the GBDT and RF models. A larger number of points are 
observed outside the red dashed lines, particularly in regions of higher 
or lower yield stress, indicating that the model has higher variance and 
less reliability in its predictions compared to the top-performing models.

Finally, the 1D-CNN model, illustrated in (d), performed better than 
LSTM and ResMLP with an RMSE of 80.1, a PCC of 0.92, and an R2 of 
0.84. The CNN model demonstrates stronger alignment with the actual 
values, with most points within the red dashed lines, though it shows 
slightly higher prediction deviations compared to the RF model. This 
suggests that the 1D-CNN is a robust neural network-based contender, 
offering results close to the RF model, though not as strong as the GBDT 
model.

Ultimately, while all models demonstrate strong predictive capabil
ities, the GBDT model slightly outperforms the RF model, making it the 
preferred choice for predicting yield stress under radiation-hardening 
conditions. The 1D-CNN model follows closely behind RF, while 
ResMLP exhibits higher prediction variance, as evidenced by the larger 
number of points outside the red dashed lines. The analysis of the red 

dashed lines reinforces that GBDT provides the most consistent and 
accurate predictions, followed by RF and 1D-CNN, with ResMLP per
forming relatively less effectively.

It is worth noting that some points for the GBDT model fall outside 
the red dashed lines. This is primarily due to the complexity of the 
collected dataset. The data were gathered from diverse literature sources 
over an extended period, covering a wide range of steel grades from 
various regions worldwide. Moreover, the experimental testing for these 
steels was conducted in different research centres. Specifically, for ex
periments such as radiation testing, variations between testing centres 
can significantly influence the results. Consequently, these factors 
contribute to the presence of data points outside the allowable error 
range. However, this does not indicate poor model performance. On the 
contrary, the GBDT model captures the key patterns and features of the 
data despite its inherent variability, which is further validated in later 
sections that demonstrate the model’s strong performance across vali
dation tests.

3.2. Feature importance analysis

Fig. 3(a) highlights the importance of chemical composition vari
ables on yield stress, determined using the feature_importances_ attribute 
of the GBDT model, which was selected based on its superior perfor
mance in the model comparison conducted in the previous section. Ta 
emerges as the most influential element, indicating its significant impact 
on yield stress. W also shows substantial importance, followed by S, 
which notably affects yield stress. Cr, Nb, Ni, C, and Si have moderate 
importance while elements such as V, Al, Mn, and B exhibit lower 
importance, indicating a relatively minor impact on yield stress.

This distribution of variable importance may differ from general 
observations due to the specific focus of our study. One key reason is that 
the target material in this research is low-activation steel, which imposes 
strict compositional limitations on certain elements [41,42]. As shown 

Fig. 2. Comparative scatter plots showing yield stress predictions under radiation conditions for each model.
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in the variable distribution plots in the Supplementary Materials, Nb and 
B are largely absent in the dataset, and C content is tightly controlled at 
around 0.1 wt%. These constraints inherently reduce the observed 
contributions of these elements to yield stress in our model. Another 
important factor is the scope of this study, which focuses on the effect of 
chemical composition on yield strength changes under radiation expo
sure rather than the general strengthening mechanisms in non- 
irradiated materials.

The results, therefore, reflect the specific compositional constraints 
and the influence of radiation-induced phenomena rather than con
ventional strengthening trends. This distinction highlights the impor
tance of considering the material-specific context when interpreting 
variable importance, particularly for steels designed for specialised en
vironments like radiation exposure.

Fig. 3(b) demonstrates the importance of radiation condition vari
ables on yield stress. Ttest has the highest importance, significantly 
impacting yield stress. Irradiation Dose also shows high importance, 
indicating its notable effect. Tirr holds moderate importance, while He
lium Content exhibits lower importance but still influences yield stress 
to some extent.

3.3. Validation of the model

To validate the model, experimental data from the literature were 
used. The following sections provide a detailed comparison between the 
GBDT model predictions and experimental results from various studies.

Fig. 4 presents a comparison between the GBDT model predictions 
and experimental results by A. Kimura [43] for JLM-0 and JLM-1 ma
terials. The x-axis represents Irradiation and test temperatures at 373 ◦C, 
390 ◦C, 420 ◦C, 520 ◦C, and 600 ◦C, with corresponding doses of 15, 37, 
40, 44, and 44 dpa. The y-axis shows yield stress. For JLM-0, the GBDT 
predictions closely match the experimental data, both showing a 
decreasing trend in yield stress with increasing temperature. Minor de
viations fall within the experimental error margins, validating the 
model’s effectiveness. For JLM-1, the model’s predictions also align well 
with experimental results, though slight discrepancies are observed at 
higher temperatures.

Fig. 5 presents a comparison between the experimental results by S. 
Knitel [44] and the GBDT model predictions for both irradiated and 
unirradiated Eurofer97 steel. The x-axis represents test temperatures 
ranging from − 100 ◦C to 400 ◦C, while the y-axis shows yield stress 
values. The irradiation conditions are specified as 250 ◦C, 11 dpa, and 
540 appm He.

For the irradiated Eurofer97, the experimental results start at 
approximately 1200 MPa at − 100 ◦C and show a decreasing trend, 

reaching around 800 MPa at 400 ◦C. The GBDT model predictions follow 
a similar trend, starting near 1200 MPa at − 100 ◦C and decreasing to 
about 880 MPa at 400 ◦C. Minor deviations between the experimental 
results and model predictions fall within the experimental error 
margins.

For unirradiated Eurofer97, the experimental results begin at around 
600 MPa at − 100 ◦C and decrease to about 430 MPa at 400 ◦C. The 
GBDT model predictions show a close alignment, starting at approxi
mately 600 MPa at − 100 ◦C and decreasing to around 450 MPa at 
400 ◦C. Both the experimental results and GBDT predictions exhibit a 
decreasing trend in yield stress as the test temperature increases.

Fig. 6 presents a comparison between the experimental results by 
Kiyoyuki Shiba [45] and the GBDT model predictions for F82H. The 
irradiation conditions are specified as 250-265 ◦C, 0.8 dpa, and 100 
appm He.

For the F82H, the experimental results start at approximately 820 
MPa at 25◦C and show a decreasing trend, reaching around 650 MPa at 
400 ◦C. The GBDT model predictions follow a similar trend, starting near 

Fig. 3. Variable importance in predicting yield stress under radiation conditions. (a) Chemical composition variables, and (b) radiation condition variables.

Fig. 4. Comparison of GBDT model predictions and experimental results by A. 
Kimura [43] for JLM-0 and JLM-1 steels in terms of yield stress against irra
diation and test temperatures. The predictions align well with the experi
mental data.
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800 MPa at 25◦C and decreasing to about 600 MPa at 400 ◦C. Minor 
deviations between the experimental results and model predictions are 
observed, with the experimental data showing slightly higher variability 
as indicated by the error bars. Despite these deviations, the overall trend 
in both the experimental results and GBDT predictions is consistent, 
with yield stress decreasing as the test temperature increases.

Fig. 7 presents a comparison between the GBDT model predictions 
and experimental results for various steels [46–51]. The x-axis repre
sents the dose ranging from 0 to 80 dpa, while the y-axis shows the 
change in yield stress. The temperature conditions are specified as 
300–335 ◦C for irradiation and 300–350 ◦C for testing.

The experimental results for various materials generally demonstrate 
an increase in ΔYS with dose. For most materials, the increase levels off 
at higher doses, typically beyond ~30 dpa. However, some materials, 
such as Eurofer97 E83698 and E83697 HT, exhibit a continued increase 
in ΔYS even at higher doses, albeit at a decreasing rate. This behaviour 

suggests that, while radiation-induced hardening tends to saturate at 
higher doses, it does not entirely plateau for these materials. The scatter 
in the experimental data reflects variability among different materials 
and experimental conditions. Whilst the predicted trend by GBDT aligns 
well with the experimental data for Eurofer97 (E83699, E83697) and 
F82H-mod, certain deviations are observed, particularly at higher doses. 
Nevertheless, the ΔYS values for most materials converge within the 
400–500 MPa range, consistent with the overall trend predicted by the 
model. Notably, some materials, such as 9Cr2WVTa (BS) and OPTIFER 
XI, show slightly different behaviours, with ΔYS values either slightly 
higher or lower than the GBDT predictions. Despite this, the overall 
agreement between the GBDT model predictions and experimental re
sults is strong, particularly at higher doses where the ΔYS values 
stabilise.

3.4. Effects of radiation temperature and dose

Based on the validation in the previous section, our model demon
strates high accuracy, enabling us to predict and analyse the effects of 
radiation temperature and dose on radiation hardening. To intuitively 
display the relationships between these variables, we use polar coordi
nate charts to allow for clear observation and facilitate easier analysis of 
the impact of temperature, and dose, on yield strength.

In these charts: Temperature is represented by the angle, increasing 
clockwise from 0 ◦C (top) to 625 ◦C (bottom). The radiation dose (dpa) is 
represented by the radius, extending from the centre (0 dpa) to the edge 
(50 dpa). Yield strength (ΔYield Strength, MPa) is indicated by the 
colour, ranging from deep blue (lowest) to red (highest), with the colour 
legend providing specific values.

Fig. 8(a) presents the polar coordinate chart of F82H steel high
lighting the significant radiation hardening effect, particularly in the 
temperature between 125 ◦C and 375 ◦C. Yield strength increases 
significantly as the radiation dose rises from 0 dpa to approximately 20 
dpa. Between 20 dpa and 40 dpa, yield strength fluctuates slightly but 
rises again at 40 dpa, to reach a peak of around 700 MPa at approxi
mately 315 ◦C.

For Eurofer97 steel, Fig. 8(b), a similar trend is observed, where the 
radiation hardening effect is notable between 125 ◦C and 375 ◦C. As the 
dose increases from 0 dpa to approximately 20 dpa, yield strength in
creases significantly. It then shows fluctuations and a slight decrease 

Fig. 5. Comparison of experimental results by S. Knitel [44] and GBDT model 
predictions for yield stress of irradiated and unirradiated Eurofer97 across test 
temperatures. The predictions closely match the experimental data.

Fig. 6. Comparison of experimental results by Kiyoyuki Shiba [45] and GBDT 
model predictions for yield Stress of F82H across test temperatures. The GBDT 
model predictions closely align with the experimental results, demonstrating 
the model’s robust predictability for F82H under the given conditions.

Fig. 7. Comparison of GBDT model predictions and experimental results 
[46–51] for change in yield stress (ΔYS) against dose (dpa) for various steels. 
The GBDT model exhibits strong predictive capability, accurately reflecting 
dose-dependent changes observed in the experimental data.
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between 20 dpa and 40 dpa, but rises again at 40 dpa, peaking around 
700 MPa at approximately 315 ◦C.

The chart for JLM-0 steel, Fig. 8(c), indicates a relatively mild ra
diation hardening effect, mainly between 250 ◦C and 375 ◦C. Yield 
strength increases with the radiation dose from 0 dpa to about 10 dpa. 
Between 10 dpa and 30 dpa, it fluctuates and slightly decreases, then 
rises again at 30 dpa, reaching a maximum of approximately 500 MPa 
around 375 ◦C.

For OPTIFER steel, in Fig. 8(d), the radiation-hardening effect is 
similar to JLM-0 steel but slightly more pronounced. Within the 250 ◦C 
to 375 ◦C range, yield strength increases with the radiation dose from 0 
dpa to about 20 dpa. It then fluctuates and decreases slightly between 
20 dpa and 30 dpa, rising again at 30 dpa, and peaking just below 700 
MPa around 315 ◦C.

The analysis of all the graphs reveals that radiation hardening effects 
are not uniformly increasing with radiation dose; instead, they exhibit 
noticeable fluctuations. Generally, the yield strength increases with ra
diation dose, but there are specific dose ranges where it fluctuates. 
Kohno et al., [52] conducted radiation dose-dependency tests on JLF 
series steel, F82H, and HT-9 at 656 ± 700 K. Their results indicated that, 
with increasing radiation dose, yield strength initially rose to around 15 
to 20 dpa before beginning to decline. After reaching 35 dpa, the yield 
strength slightly increased again, eventually saturating at 40 dpa. Yield 
strength is likely to peak at around 20 dpa. This is highly consistent with 
our results, further demonstrating the accuracy of our model.

In the early stages of radiation hardening research, it was generally 
believed that the phenomenon was due to the formation of dislocation 
loops. Dubinko et al., [28] proposed a formula for calculating radiation 
hardening, as shown in Eq. (1). However, their model is not applicable in 
all cases, as the results in the reference [53] contradict the formula. With 
further optimisation by Kotrechko et al., [29] it was recognised that the 
initial model only considered the contribution of dislocation loops to 
hardening, neglecting the impact of precipitates. Thus, they improved 
the formula, as shown in Eq. (2) [29]. By combining the above formulas, 
Eq. (3) was derived [29]. Kotrechko’s results have been widely accepted 
and applied [54–58]. Their experimental results indicated that both the 
coefficients for the contributions of dislocation loops and radiation 
precipitates to the overall yield strength (αDL and αRP) are not constant 
values but vary with radiation temperature, radiation dose, dose rate, 
and the size and quantity of dislocation loops and precipitates. From 
their results, many variables influence αDL and αRP, with radiation dose 
being just one of them. Although studies have shown that an increase in 
dose can lead to an increase in the number of dislocation loops and 
precipitates, this is only achievable within a certain temperature range 
[21]. Therefore, according to Kotrechko’s formula, it cannot be 
confirmed that the degree of radiation hardening increases with the 
increase in radiation dose. This explains why, within a certain dose 
range, the degree of radiation hardening does not continuously increase 
with the radiation dose but instead shows fluctuations. 

Fig. 8. Polar coordinate charts showing the radiation hardening effects on different steel types as indicated across a range of temperature and radiation doses. Each 
chart provides a visual representation of the change of yield strength (ΔYS, MPa) with temperature indicated by angle and radiation dose (dpa) by radius.

P. Wang et al.                                                                                                                                                                                                                                   Computational Materials Science 251 (2025) 113773 

7 



ΔσY = MαGb
̅̅̅̅̅̅̅̅̅̅̅̅
N × d

√
(1) 

ΔσY =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ2
YDL + σ2

YRP
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(2) 

ΔσY = MGb
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

α2
DLNDL × dDL + α2

RPNRP × dRP

√

(3) 

where M is the Taylor factor, N × d is the product of the number density 
and diameter of the DL’s, respectively, G is the shear modulus and b is 
the Burgers vector. α is the parameter and ranges from 0 to 1. σYDL and 
σYRP represent the yield strengths due to dislocation loops and radiation 
precipitates, respectively. αDL and αRP are the coefficients for the con
tributions of dislocation loops and radiation precipitates to the overall 
yield strength, respectively.

The temperature significantly influences the radiation hardening 
effect, particularly within the 125 ◦C to 375 ◦C range where the hard
ening effect is most pronounced. At temperatures above 375 ◦C, the 
radiation hardening effect diminishes. It can be seen from Fig. 8 that all 
types of steel reached a peak between 300–350 ◦C, a phenomenon 
observed in many previous studies. Many studies [22–25,59,60]
observed dislocation loops and precipitates in this temperature range. 
Specifically, Klimenkov [61] indicated that the number of defects 
increased rapidly after 300 ◦C, and this increase in defects hinders the 
movement of dislocations, thereby enhancing the strength of the steel. 
Additionally, researchers [22,25,60] also noted that these dislocation 
loops are significantly time-dependent, with their number peaking be
tween 300–350 ◦C and then rapidly decreasing. Therefore, the degree of 
radiation hardening increases with radiation temperature due to the 
formation of dislocation loops and precipitates. As the temperature rises 
to 300–350 ◦C, the density of dislocation loops and precipitates reaches 
its maximum. With further temperature increase, their density rapidly 
decreases, accompanied by the recovery of martensitic laths, leading to 
the softening of the steel. Combining the above results with the de
scriptions in the relevant literature, it is evident that our model captures 

the dependence of radiation hardening on radiation temperature 
accurately.

3.5. Effects of element content

Based on the results of the variable importance analysis, the eight 
elements with the greatest impact on radiation hardening in terms of 
chemical composition are Ta, W, S, Cr, Nb, Ni, C and Si. Since S is an 
element that needs to be controlled during the metallurgical process, 
and Nb, Ni and Si are radiologically undesired, and because the carbon 
content in low-activation steels remains relatively stable at around 0.1 
%, this study focuses only on the analysis of the effects of Ta, W, and Cr 
on radiation hardening. Similar to the previous section, polar coordinate 
charts are used to see the effect of element content on the radiation 
hardening of Eurofer97. In these charts: Temperature is represented by 
the angle, increasing clockwise from 0 ◦C (top) to 625 ◦C (bottom). 
Element content (W, Cr, Ta) is represented by the radius, extending from 
the centre (0 wt%) to the edge (3 wt% for W, 10 wt% for Cr, and 0.6 wt% 
for Ta). Yield strength (ΔYield Strength, MPa) is indicated by the colour, 
ranging from deep green (lowest) to red (highest), with the colour 
legend providing specific values. The radiation dose is set to a fixed 
value of 50 dpa. The radiation hardening is most pronounced at this dose 
level, making it ideal for analysing the influence of elements on radia
tion hardening. Notably, in polar coordinates, Cr content between 0 and 
2.25 wt% represents the model’s extrapolated results, while the 
remaining values are within the training dataset and considered 
interpolated.

Fig. 9(a) shows a polar coordinate chart of W content, highlighting 
radiation hardening effects from 0 to 3 wt% between 0 ◦C and 375 ◦C. 
The effect is mild from 0 ◦C to 125 ◦C but intensifies from 125 ◦C to 
250 ◦C as W increases from 0 to 2 wt%, then declines between 2 and 3 wt 
%. From 250 ◦C to 375 ◦C, hardening further rises, peaking at around 
315 ◦C, where it reaches approximately 700 MPa at W contents below 
0.5 wt% or between 1.5 and 2.5 wt%. Beyond 375 ◦C, radiation 

Fig. 9. Effect of alloying element content: (a) W, (b) Cr, and (c) Ta, on radiation hardening in Eurofer97 steels at different temperatures.
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hardening declines sharply.
Based on the above results, it can be seen that the addition of W 

causes significant radiation hardening in steel within the 0-375℃ range, 
consistent with the findings of many studies [62,63]. W is a high- 
temperature resistant element, and during irradiation, reduced activa
tion steel precipitates carbides, mainly M23C6 and MX, whereas in 
M23C6, M primarily represents W, Cr, and Fe [64,65]. Relevant studies 
have shown that M23C6 does not easily coarsen [66] and is primarily 
distributed along the grain boundaries of martensitic and ferritic laths, 
where it stabilises the boundaries during irradiation [67,68], thereby 
enhancing the strength of the steel. Another study [69] indicated that 
the stability of M23C6 carbides is enhanced by the addition of tungsten 
(W). The addition of tungsten increases the driving force for the carbide, 
making it more stable. Additionally, when tungsten is incorporated into 
the carbide, the energy barrier for nucleation decreases, making the 
formation of carbides easier. Due to the low mobility of tungsten in the 
ferritic matrix, (Cr, Fe, W)23C6 carbides exhibit a lower coarsening rate 
compared to (Cr, Fe)23C6 carbides. Therefore, the addition of W will 
make the formation of M23C6 carbides easier, more stable, and less prone 
to coarsening, which will inevitably further harden the steel under 
irradiation.

However, as can be seen from Fig. 9(a), the degree of hardening is 
not directly proportional to the W content. The stability of precipitates 
under irradiation is a complex process involving competing effects of 
irradiation-induced ballistic dissolution and radiation-enhanced diffu
sion [70–74]. Additionally, irradiation-induced solute segregation at the 
grain boundary further complicates the stability of the precipitates [75]. 
Therefore, the reason why the degree of radiation hardening is not 
proportional to the W content may be related to the aforementioned 
factors. However, due to a lack of related studies, this cannot be 
confirmed and requires further research.

Fig. 9(b) shows a polar coordinate chart of Cr content, indicating 
strong radiation hardening across the entire 0 to 10 wt% range from 0 ◦C 
to 375 ◦C, more pronounced than with W. From 0 ◦C to 125 ◦C, hard
ening reaches around 500 MPa at Cr levels of 6 to 8 wt%. As tempera
tures rise to 125 ◦C-250 ◦C, hardening intensifies, peaking near 600 MPa 
for Cr contents of 0 to 3 wt% while levels of 4 to 8 wt% show lower 
hardening. From 250 ◦C to 315 ◦C, hardening peaks at about 750 MPa at 
Cr contents of 0 to 0.5 wt% or 6 to 8 wt%. Beyond 375 ◦C, hardening 
decreases rapidly.

Similar to the addition of W, the addition of Cr also results in sig
nificant radiation hardening of steel within the 0–375 ◦C range. How
ever, the hardening effect with Cr is more pronounced than with W. The 
strengthening effect of Cr can be attributed to the precipitation of M23C6 
carbides during irradiation, which, as previously discussed, are fine and 
resistant to coarsening [66], thus enhancing the hardening. Another 
reason is that Cr is the most abundant element in reduced-activation 
steel. Studies have shown that as the Cr content increases, the amount 
of M23C6 in reduced-activation steel also increases [76]. Additionally, Cr 
is not only present in M23C6. Research indicates that under high radia
tion doses, high-density (1024 m− 3) clusters of approximately 3–5 nm 
enriched in chromium are observed in the microstructure [77], these 
clusters impede dislocation movement, further enhancing the hardening 
effect. This inevitably leads to a greater degree of radiation hardening in 
steel compared to the addition of W.

Similar to W, we also observe that the degree of radiation hardening 
is not directly proportional to the Cr content. There is no existing 
literature indicating this phenomenon, which requires further 
investigation.

Fig. 9(c) shows a polar coordinate chart of Ta content, revealing 
significantly lower radiation hardening compared to W and Cr. No 
substantial hardening occurs from 0 ◦C to 125 ◦C. However, at 125 ◦C- 
250 ◦C, hardening increases sharply, peaking near 650 MPa for Ta 
content between 0 and 0.2 wt%, then decreasing as Ta rises from 0.2 to 
0.5 wt%. A slight hardening uptick is seen for Ta between 0.5 and 0.6 wt 
%. At 250 ◦C–375 ◦C, hardening decreases, except for a rise to around 

400 MPa at 315 ◦C for Ta content between 0.3 and 0.4 wt%. Beyond 
375 ◦C, hardening declines rapidly.

Ta is an important component of reduced-activation steel and was 
ranked first in the previous variable weight sorting. From the polar plot 
of Ta, it is evident that, unlike W and Cr, the addition of Ta significantly 
reduces the degree of radiation hardening. In the discussion on W, it was 
mentioned that the main precipitates in reduced-activation steel are 
M23C6 and MX, with M being V or Ta, and X being C or N. Research [71]
has shown that during irradiation, there is a phenomenon of re-solution 
of TaC in reduced-activation steel. This has been explained by radiation- 
induced amorphisation and radiation-enhanced diffusion at the given 
temperature range. This explains why steels with low Ta content exhibit 
significant hardening between 125–250 ◦C, while above 250 ◦C, due to 
radiation-induced amorphisation and radiation-enhanced diffusion, TaC 
disappears, thereby reducing its pinning effect on dislocations and 
consequently decreasing the hardening degree. Furthermore, studies 
[78] have indicated that the addition of Ta accelerates the recovery of 
martensite during irradiation, which also reduces the radiation hard
ening of steel. Therefore, the addition of Ta lowers the degree of radi
ation hardening.

4. Conclusion

In this study, we analysed radiation hardening data from 1985 to 
2024, covering a range of steel types including Eurofer97, F82H, T91, 
OPTIFER, JLM, JLF, and CLAM. We used GBDT, XGBoost, RF, ResMLP, 
and 1D-CNN for modelling the data. Following extensive data pre
processing and hyperparameter optimisation, we assessed the models’ 
performance. The most accurate model was then selected and its pre
dictions were compared with experimental data from the literature for 
validation. Finally, we used this model to predict and examine the ef
fects of chemical composition and radiation conditions on radiation 
hardening in reduced activation steels. Our key findings are as follows: 

1. Model Performance: Hyperparameter optimisation indicated that 
the GBDT and RF models shared optimal hyperparameter regions, 
indicating effective generalisation with minimal overfitting. 
XGBoost, however, showed signs of overfitting, making it less suit
able for this dataset. 1D-CNN, and ResMLP models performed less 
effectively than the ensemble models, showing higher variance and 
weaker generalisation.

2. GBDT Model Advantage: GBDT emerged as the top-performing 
model with matrics of RMSE: 73.8, PCC: 0.93, and R2: 0.87, excel
ling in yield stress prediction under radiation hardening conditions. 
The model identified Ta, W, and Cr as the most influential elements, 
with test temperature and irradiation dose were the most significant 
radiation parameters.

3. Validation with Experimental Data: GBDT’s predictions were 
validated against experimental data for JLM-0, F82H, Eurofer97, and 
OPTIFER, demonstrating reliable performance across diverse irra
diation and temperature conditions.

4. Radiation Hardening Trends: The study revealed that radiation 
hardening in reduced activation steels peaks around 315 ◦C and 
declines beyond 375 ◦C. The radiation dose effect showed increased 
hardening up to 20 dpa, a slight reduction between 20–35 dpa, and 
stabilisation beyond 35 dpa. While W and Cr enhanced hardening up 
to 375 ◦C, Cr had a more pronounced effect and Ta tended to mitigate 
hardening. These effects on radiation hardening are linked to 
changes in dislocation loops and precipitate behaviour.

This study underscores the transformative potential of machine 
learning in materials science, especially in predicting radiation hard
ening phenomena. Our findings provide a deeper understanding of ra
diation effects on RAFM steels, offering pathways to improved material 
performance in nuclear applications.
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Si–Ni–P on the emergence of dislocations loops in Fe–9Cr matrix under neutron 
irradiation: TEM study and OKMC modelling, J. Nucl. Mater. 540 (2020) 152395, 
https://doi.org/10.1016/j.jnucmat.2020.152395.

[58] M.J. Swenson, C.K. Dolph, J.P. Wharry, The effects of oxide evolution on 
mechanical properties in proton- and neutron-irradiated Fe-9%Cr ODS steel, 
J. Nucl. Mater. 479 (2016) 426–435, https://doi.org/10.1016/j. 
jnucmat.2016.07.022.

[59] F. Abe, T. Noda, H. Araki, M. Narui, H. Kayano, Irradiation hardening and ductility 
loss of a low-activation 9Cr-1V ferritic steel at low temperatures, J. Nucl. Mater. 
166 (1989) 265–277, https://doi.org/10.1016/0022-3115(89)90223-7.

[60] E. Materna-Morris, H.C. Schneider, B. Daffener, R. Rolli, O. Romer, A. Moslang, 
Mechanical properties and structural analysis of martensitic low-activation alloys 
after neutron irradiation. In 20th IEEE/NPSS Symposium onFusion Engineering, 
2003.

[61] M. Klimenkov, U. Jäntsch, M. Rieth, A. Möslang, Correlation of microstructural and 
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