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Abstract
The application of machine learning was investigated for predicting end-point temperature in the basic oxygen furnace

steelmaking process, addressing gaps in the field, particularly large-scale dataset sizes and the underutilization of boosting

algorithms. Utilizing a substantial dataset containing over 20,000 heats, significantly bigger than those in previous studies,

a comprehensive evaluation of five advanced machine learning models was conducted. These include four ensemble

learning algorithms: XGBoost, LightGBM, CatBoost (three boosting algorithms), along with random forest (a bagging

algorithm), as well as a neural network model, namely the multilayer perceptron. Our comparative analysis reveals that

Bayesian-optimized boosting models demonstrate exceptional robustness and accuracy, achieving the highest R-squared

values, the lowest root mean square error, and lowest mean absolute error, along with the best hit ratio. CatBoost exhibited

superior performance, with its test R-squared improving by 4.2% compared to that of the random forest and by 0.8%

compared to that of the multilayer perceptron. This highlights the efficacy of boosting algorithms in refining complex

industrial processes. Additionally, our investigation into the impact of varying dataset sizes, ranging from 500 to 20,000

heats, on model accuracy underscores the importance of leveraging larger-scale datasets to improve the accuracy and

stability of predictive models.
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1 Introduction

The industrial sector has become a prodigious producer of

data, a trend that has been further increased by the fourth

industrial revolution, with the steel industry playing an

integral role in this movement [1]. Industry 4.0 represents

an ecosystem with diverse information interfaces that

connect people, processes, administrations, systems, and

internet of things-enabled industrial assets across both

digital and physical realms. It provides a comprehensive

vision of the industry’s future, characterized by detailed

digital processes where artificial intelligence (AI) con-

tributes significantly [2]. Consequently, data-driven mod-

eling and machine learning have thus risen for optimizing

industrial processes, leveraging the extensive data gener-

ated during manufacturing [3, 4]. Nenchev et al. [5] pro-

vide a thorough illustration on data side, outlining the six

essential stages of steel production. These stages begin

from the blast furnace, followed by the basic oxygen fur-

nace (BOF), ladle furnace, continuous casting, rolling

machine, and finally the end products. Each stage is char-

acterized by the integration of inputs, control variables, and

external factors, which are essential for developing a data-

driven optimization model.

Currently, basic oxygen furnaces play a crucial role in

global steel production, contributing to more than 70% [6].

This phase is particularly a key phase as it directly influ-

ences the quality and productivity of the end products. The

main objectives of the BOF are to elevate temperature and
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control the composition during the steel transformation. To

optimize and control the BOF process effectively, it is

essential to accurately predict end-point temperature [7–9]

and compositions, including elements such as carbon

[10, 11], phosphorus [12, 13], and oxygen [14, 15]. Ini-

tially, mathematical models were used for BOF end-point

predictions [16]. However, the precision of these models

often fails to satisfy the industry’s stringent requirements,

even after integrating monitoring and analytic systems like

flue gas analysis, flame spectrum assessment, and sec-

ondary lance detection [17]. This shortfall highlights the

necessity for more advanced modeling techniques, capable

of handling the complexity and dynamic nature of the BOF

process.

From the beginning to the end of the BOF process,

various data in different modalities are recorded. Tabular

data are captured at the onset of the process, including

several controllable inputs. This prevalence of tabular data

has directed much of the research on machine learning

(ML) applications within the BOF process toward utilizing

tabular datasets [4]. Different ML algorithms have been

employed on this data type, with support vector machine

(SVM) being the most prevalent [4]. SVM is used in sev-

eral studies for prediction of end-point temperature and

other elements [18–21].

Ensemble learning algorithms, categorized into bagging

algorithms and boosting algorithms, have become a

cornerstone in machine learning, particularly for handling

tabular data [22]. Their ability to integrate insights from

multiple models has proven effective in enhancing pre-

dictive accuracy and robustness, making them suitable for

intricate industrial applications [23, 24]. Despite this, their

extensive deployment in the BOF context remains

infrequent.

The utilization of machine learning algorithms on big

datasets is exemplified by Nenchev et al. [5], Bae et al.

[25], and Sala et al. [26], who employed substantial data-

sets, ranging from 7600 to 9708 heats, for training BOF

end-points prediction models. These endeavors collectively

validated the efficacy of leveraging big datasets in training

models for the BOF process. Among 70 studies that

explicitly mention the size of their training datasets, only a

few utilize vast datasets exceeding 5000 heats/operations

[4].

These highlight the need for more sophisticated ML

algorithms such as ensemble models and bigger compre-

hensive datasets that can capture and encapsulate the BOF

process’s complexity and industrial scenario more accu-

rately. Our research addresses these gaps by introducing

ensemble models trained on an extraordinary industrial-

scale dataset comprising over 20,000 heats, with more than

20 significant features. This is the first study of its kind to

use a dataset of this scale, including full range of variability

in industrial production line.

To explore the predictive accuracy of these extensive

data, five ML models were developed to predict the end-

point temperature of the BOF process. These models

include four ensemble learning algorithms: XGBoost,

LightGBM, CatBoost and random forest (RF), and one

neural network algorithm (multilayer perceptron (MLP)).

A comprehensive comparative analysis was performed to

assess the performance of these models, with particular

focus on the impact of dataset size on their predictive

accuracy.

2 BOF data and ML modeling

2.1 Data from BOF process

BOF is a widely prevalent process in steelmaking, but there

are slight variations in the process flow across different

plants and sizes. Here is a description of the BOF process

flow for the 120-t furnaces involved in this study. The key

objectives, timeline and data flow are illustrated in Fig. 1.

The main objectives are to elevate temperature and control

the composition during the steel transformation. The pro-

cess starts by charging the furnace with liquid iron and

scrap steel, at which point data can be obtained before

blowing begins, including the liquid iron composition,

liquid iron temperature, liquid iron mass and scrap steel

mass. Oxygen is then blown into the furnace to initiate a

series of oxidation reactions, necessary for temperature

elevation and decarbonization, generating data on blowing

parameters such as blowing time and oxygen consumption.

Various additives are also added during the process, and

the quantities added are recorded. When approximately

80%–90% of the oxygen-blowing process is complete, a

sub-lance is utilized for TSC (temperature, sampling, and

carbon) detection. Another sub-lance is deployed at the end

of oxygen blowing for TSO (temperature, sampling, and

oxygen) detection. The results from TSC and TSO testing

are crucial data records representing the composition and

temperature of the steel in BOF at specific moments. The

entire process lasts for 30 to 40 min, with the blowing

phase taking up to 10 to 20 min.

2.2 ML models for BOF predicting

In the context of modeling the BOF process, Ghalati et al.

[4] provide a statistical overview of the machine learning

algorithms utilized in this field. Continuing this line of

inquiry, this paper offers an updated statistical analysis of

the various algorithms employed in the BOF domain as

illustrated in Fig. 2. Despite the proven effectiveness of
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Fig. 1 Key objectives, timeline, and tabular data flow in BOF process

Fig. 2 Application of different algorithm types in BOF data-driven models highlighting rare use of boosting algorithms in this field. *Neural

networks are categorized into two groups: multilayer perceptron and other neural networks
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ensemble learning algorithms in navigating the complexi-

ties of tabular data, their deployment in BOF applications

is still not widespread, particularly the case for boosting

algorithms.

Ensemble learning algorithms have demonstrated pro-

mise in modeling the BOF process. Zhang et al. [27] dis-

played the strengths of ensemble algorithms, particularly

gradient-boosting regression, and random forest regression,

in outperforming other models in predicting end-point

phosphorus based on a training dataset with 668 samples.

Similarly, Sala et al. [28] demonstrated the superior per-

formance of gradient-boosting regression in predicting end-

point temperature and various chemical compositions with

4808 training samples.

In the specific field of predicting the BOF end-point

temperature, only Bae et al. [25], Sala et al. [26] and Fileti

et al. [29] have used datasets containing more than 5000

heats for modeling employed neural network algorithms.

Therefore, the effectiveness of boosting algorithms on big

datasets in the end-point temperature prediction domain

has not been verified yet. Furthermore, since different

researchers use different datasets, it is not possible to

directly compare the performance of various algorithms on

this specific task. To address this gap, we focus on boosting

algorithms applied to a large-scale dataset, comparing their

performance directly with MLP and random forest. Our

analysis reveals that boosting algorithms surpass these

benchmarks in both accuracy and stability as dataset size

increases, highlighting their robustness and effectiveness in

complex BOF applications.

2.3 Ensemble learning

Ensemble learning, a pivotal advancement in machine

learning, extends this concept by combining multiple

inducers, or sub-models, to enhance decision-making in

supervised tasks. Each inducer is an algorithm that pro-

cesses a set of labeled examples to produce a model, a

classifier or regressor, that generalizes from these exam-

ples. Ensemble learning is often linked to harassing the

wisdom of crowd in machine learning, as it merges several

individual opinions to surpass the performance of a single

model [30].

In the general framework, building an ensemble model

entails selecting a methodology for training the sub-models

and choosing a suitable process G for integrating the out-

puts of n sub-models. Assuming there is a dataset that

includes input feature X and output feature Y, the ensemble

algorithm can be represented as follows:

Ypred ¼ F Xð Þ ¼ G x1;x2;x3; . . .;xnð Þ ð1Þ

where Ypred represents the predicted values; F represents

the ensemble model; and xi represents the sub-models.

Algorithms within ensemble learning are divided into

two categories: bagging-type algorithms and boosting-type

algorithms, with the majority of most recent ensemble

learning algorithms derived from these categories.

Bagging algorithm, a well-established ensemble tech-

nique, employs random sampling with replacement to

generate subsets of the training dataset. These subsets train

multiple base models independently, and the final model

aggregates the outcomes of these individual models [31].

Figure 3 illustrates the schematic diagram of the funda-

mental framework of bagging algorithms, which is con-

ducted in a parallel manner. Random forest is a well-

known algorithm derived from the concept of bagging [32].

Boosting algorithm incrementally improves model per-

formance by integrating the strengths of a sequence of

weak learners [33]. It starts by training a basic learner on

the original training dataset and then adjusts the training

samples’ weighting based on the different prediction per-

formances. For classification tasks, this adjustment is based

on the misclassification rate, while for regression, it is

based on the residual errors of the predictions. The process

is repeated until a pre-defined criterion is met, culminating

in a robust predictive model from the ensemble of weak

learners. Figure 4 illustrates the schematic diagram of the

fundamental framework for boosting algorithms, which is

conducted in a tandem manner.

Many researchers have made improvements to the basic

workflow of boosting algorithms, leading to the develop-

ment of new boosting algorithms. A prime example of a

boosting algorithm is the gradient-boosting decision tree

[34]. In recent years, many advanced boosting algorithms

have emerged, such as XGBoost [35], LightGBM [36], and

CatBoost [37].

Ensemble learning addresses unique machine learning

challenges such as class imbalance, concept drift, and the

course of dimensionality and finds extensive application in

a variety of fields [30]. Furthermore, ensemble algorithms,

like XGBoost, are commonly regarded as the preferred

choice for addressing real-world tabular data problems

[22].

3 Modeling procedures

3.1 Data description

In this study, a dataset comprising 39,591 heats, sourced

from a Chinese steel company, was utilized. This dataset,

collected from April 2021 to March 2022, represents a

wide range of production diversity, including 259 different

steel grades produced in three similar 120-t basic oxygen

furnaces within the same steel plant. A meticulous selec-

tion and feature extraction process was applied to the raw
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data, converting it into a structured data frame of pertinent

features for detailed analysis. These features encompassed

a broad spectrum of data, including liquid iron character-

istics, scrap details, additives, blowing parameters, and

TSO results.

3.2 Preprocessing

In the initial phase of preprocessing, a decision was made

to exclude heats with missing data. Given the considerable

size of the dataset, this approach was taken to prioritize the

integrity and quality of the data over the option of

imputation. Following this, attention was directed to the

BOF process where the TSO test results do not meet the

production requirements, and a re-blow stage is initiated to

continue blowing or add extra additives. Heats requiring

this re-blow stage are categorized as abnormal, and were

removed from the dataset, as their production data are not

suitable for inclusion in the training set.

Outlier detection and removal were employed using the

actual feature range and the interquartile range (IQR)

method. This statistical technique, based on data’s quar-

tiles, helps establish a normal data range, with points out-

side this range considered outliers. This approach involved

Fig. 3 Schematic diagram of fundamental framework of bagging algorithms by random sampling with replacement conducted in a parallel

manner

Fig. 4 Schematic diagram of fundamental framework for boosting algorithms, conducted in a tandem manner
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calculating the first quartile (Q1), also known as the lower

quartile, and the third quartile (Q3), which is the value of

the upper quartile. The IQR is calculated as the difference

between Q3 and Q1 (IQR = Q3-Q1) and represents the

range of the middle 50% of the data.

Outlier boundaries were determined using a multiplier

‘x’, setting the lower bound as Q1-x 9 IQR and the upper

bound as Q3 ? x 9 IQR. Values beyond these boundaries

were identified as outliers and are removed.

The ‘x’ multiplier was carefully chosen after testing

values between 1.5 and 3, with 2 being optimal choice,

and balancing the need to remove outliers against value

may fail the risk of excessive data loss in the complex real-

world factory setting.

Before modeling, data normalization was achieved

using the MinMaxScaler, transforming each feature value

to scale from 0 to 1 based on its minimum and maximum

values. The MinMaxScaler transfers the original value by:

Xnorm ¼ X0 � Xmin

Xmax � Xmin

ð2Þ

where X0 is the original value; Xmin and Xmax are the

minimum and maximum values, respectively; and Xnorm is

the value after scaling.

3.3 Feature engineering

The heatmap presented in Fig. 5a illustrates low correla-

tions among the key features, with most of the values under

0.4. Similarly, Fig. 5b shows the absolute correlation

computed by the Pearson correlation coefficient, indicating

that these key features have a limited correlation with the

temperature detection result by TSO (T_TSO) after blow-

ing, which serves as the target for the model, not surpassing

0.35. This low correlation underscores the necessity for

powerful algorithms like ensemble algorithms to capture

the relationships between features to enhance the model’s

predictive accuracy.

The data distribution of T_TSO presented a significant

deviation from a normal distribution, as depicted in Fig. 6.

This is because different grades of steel are produced due to

the varying tasks even within the same furnace, which

reflects a situation arising from actual onsite conditions. To

mitigate the potential impact of this situation on the mod-

eling process, the steel grades were divided into ‘low

T_TSO’ and ‘high T_TSO’ steel grade groups. This cate-

gorization was implemented by creating a new feature in the

dataset, aligning the model with observed data distribution.

3.4 Model establishment

Following data extraction and preprocessing, the dataset

was refined to include 20,416 heats. 80% of the heats were

randomly selected for training purposes and the remaining

20% for testing. For the end-point temperature prediction

of BOF process, the modeling employed five algorithms:

four from the ensemble learning algorithms, namely

XGBoost, LightGBM, CatBoost (which are boosting

algorithms), and RF (a bagging algorithm), alongside a

neuronal network model, the MLP. MLP is the most used

type of neural network for tabular data [38]. This neural

network model serves as a benchmark to assess the com-

parative effectiveness of the algorithms.

3.5 Tuning hyperparameters using Bayesian
optimization

Hyperparameter tuning, an indispensable phase in model

refinement, has evolved from manual, experience-heavy

approaches to more sophisticated methods like grid search

and random search. While grid search offers systematic

exploration within a parameter space, random search sur-

passes it in efficiency, yet neither method adjusts based on

previous results.

In this research, Bayesian optimization is adeptly

applied across models, utilizing Gaussian processes for its

flexibility and effectiveness in model tuning. Bayesian

optimization with Gaussian processes transcends the limi-

tations of previous approaches, leveraging past search

outcomes to guide future exploration, thereby optimizing

performance with enhanced efficiency [39]. This method

has been validated for its capacity to enhance the perfor-

mance of boosting learning models [40].

Hyperparameter optimization for each model was sys-

tematically conducted using Bayesian search with the

Gaussian process by fivefold cross-validation. The evalua-

tion was conducted using ‘negative mean squared error’ as

the scoring. Early stopping was incorporated into the search

process, whereby the search would stop if no enhancement

in model performance after successive 300 iterations.

The evaluation of the models’ performance was groun-

ded in three metrics; root mean square error (RMSE), mean

absolute error (MAE), and R-squared (R2), which will

collectively offer a multi-facet view of model’s accuracy

and predictability. RMSE, representing the average of the

squared differences between predicted and actual values

could be determined as:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

X

n

i¼1

yi � ypredi

� �2
s

ð3Þ

MAE ¼ 1

n

X

n

i¼1

jyi � ypredi j ð4Þ
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R2 ¼ 1�
P

yi � ypredi

� �2

P

yi � ymeanð Þ2
ð5Þ

where R2 reflects the proportion of variance in the depen-

dent variable explained by the independent variables in the

model; yi is the actual values; y
pred
i is the predicted values;

and ymean is the mean of the actual values.

Fig. 5 Correlation map of features, illustrating low correlation among key features (a) and sorted absolute correlation between target T_TSO and

key features ranging up to 0.35 showing low correlation of BOF variables with T_TSO (b)
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4 Results and discussion

In this section, a detailed analysis of machine learning

model’s performance in the context of BOF is presented.

This includes examining the model performance before and

after hyperparameter tuning to identify the most effective

model in terms of accuracy and efficiency and assess the

impact of varying training set sizes.

4.1 Comparative analysis of model’s
performance

Bayesian optimization significantly improves the perfor-

mance of algorithms on the testing dataset, with boosting

algorithms showcasing their strengths.

To explore the optimal performance of various algo-

rithms, a Bayesian search with Gaussian process opti-

mization was executed. Each algorithm’s parameters were

meticulously selected based on data characteristics, and a

reasonable search space was established. The optimal

parameter combinations identified for each model are

detailed in Appendix (Table A1). Following the opti-

mization, models were built using the optimal parameters

and then evaluated on both training and testing data using

RMSE, MAE, and R2. Table 1 provides the performance

metrics of all models on training and test data before and

after hyperparameter tuning. The Bayesian optimization

approach for tuning has proven highly effective in

improving model performance on the testing dataset. This

demonstrates its effectiveness in mitigating overfitting and

enhancing the model’s generalizability of all models except

random forest.

Although random forest algorithm, employing bagging,

demonstrated superior performance on the training data

with the highest R2 value of 0.968, accompanied by the

lowest MAE and RMSE compared to other algorithms, it

suffers from significant overfitting. The Bayesian hyper-

parameter tuning, despite its effectiveness for boosting

algorithms, has been unable to resolve this issue, leading to

a noticeable difference in R2 values between training and

test datasets.

As shown in Fig. 7, CatBoost outperformed others in the

testing phase, with an R2 of 0.818, closely followed by

XGBoost and LightGBM with R2 values of 0.815 and

0.813, respectively. MLP and random forest recorded R2

values of 0.812 and 0.785 on testing data, respectively. R2

of CatBoost test improved by 4.2% compared to that

of the random forest and by 0.8% compared to that of the

multilayer perceptron. A correlation was noted where

higher R2 values coincide with lower MAE and RMSE,

Fig. 6 Distribution of T_TSO presenting a significant deviation from

a normal distribution with a new feature for steel grade clustering

created to mitigate impact of this distribution on modeling

Table 1 Performance of various models before and after hyperparameter tuning

Condition Algorithm Train result Test result

RMSE MAE R2 RMSE MAE R2

Before hyperparameter tuning XGBoost 0.056 0.043 0.917 0.089 0.068 0.794

LightGBM 0.075 0.058 0.852 0.086 0.065 0.810

CatBoost 0.059 0.053 0.876 0.085 0.065 0.815

RF 0.036 0.027 0.967 0.091 0.070 0.785

MLP 0.036 0.068 0.790 0.087 0.066 0.806

After hyperparameter tuning XGBoost 0.072 0.055 0.866 0.085 0.065 0.815

LightGBM 0.078 0.060 0.841 0.085 0.065 0.813

CatBoost 0.067 0.051 0.882 0.084 0.064 0.818

RF 0.035 0.027 0.968 0.091 0.070 0.785

MLP 0.087 0.066 0.805 0.085 0.065 0.812
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validating R2 as an effective performance evaluator.

Compared to the performance of MLP, the performance of

boosting models is slightly higher, demonstrating the

advantages of the boosting algorithm. The CatBoost, thus,

was proved to be the most effective model, considering R2,

MAE, and RMSE on the testing data.

Figure 8 provides a visual comparison of the prediction

values against actual values for various algorithms on the

test dataset. Predicted values aligning perfectly with actual

values appear on the red solid line, while predictions within

a ±0.1 error range fall between the red dashed lines. The

boosting algorithm (Fig. 8a, b, d) and MLP (Fig. 8c)

demonstrate a more effective convergence in the distribu-

tion of data points. The hit ratio representing the percent-

age of prediction within an acceptable range, for these

models, is close to 80% (±0.1 error range), with boosting

algorithms achieving superior results.

The scatter plot for RF (Fig. 8e) shows two obvious

distinct clusters, possibly due to the fact that the T_TSO

distribution’s dual-peak nature and the addition of engi-

neered features based on data distribution established in

Sect. 3.3 are not effective for the RF model. Despite the

robustness of RF, its prediction in extreme temperature

regions displays significant distortions. This highlights the

superior adaptability of boosting algorithms in complex

industrial data scenarios.

4.2 Impact of dataset size on prediction accuracy

The study on the significance of industrial-scale data size

for model accuracy encompasses a comprehensive experi-

mental framework. This extensive analysis involves the

application of five algorithms to datasets of varying sizes,

ranging from 500 to 20,000 samples with incrementing by

500 samples at each stage. The processes include 40 dis-

tinct training instances across five different models. The

methodology retained consistency in the features and the

data splitting strategy, as mentioned in Sect. 4.1. To min-

imize the influence of random sampling, 10 different values

were selected as random states in both the sampling

selection and the data splitting. This approach resulted in

each algorithm being modeled 100 times for every instance

of specific dataset size. The performance metrics for each

algorithm, corresponding to each dataset size, were then

determined by averaging the outcome of these 100 itera-

tions. The performance metrics of this comprehensive

analysis are detailed in Fig. 9.

With trained R2, as depicted in Fig. 9a, the RF model

demonstrated superior performance, with minimal variation

as the dataset size changed. This is due to the fact that ran-

dom forest builds many decision trees, using different data

samples and feature subsets for each tree, which allows it to

fit the training data very well. Therefore, its R2 value on the

training set is extremely high. In the case that the three

Fig. 7 Performance of models on testing dataset after hyperparameter tuning, with CatBoost showing best outcomes
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boosting algorithms initially registered high train R2 values

close to 1 with smaller datasets, however, these values

decreased as the dataset size increased. The boosting algo-

rithms mentioned here are based on gradient boosted deci-

sion trees. Gradient boosting reduces errors by gradually

building the model, with each new model focusing on the

residuals of the previous one. As the amount of data

increases, the model gradually identifies and corrects its

deficiencies. Therefore, it may no longer consider the spe-

cifics of each individual case, but instead, it needs to consider

the overall situation of the data. In contrast, MLPmaintained

a lower and more stable trained R2 throughout. Turning

attention to the testR2 values presented in Fig. 9b, a common

initial trend was observed across all algorithms

demonstrating lower values with smaller datasets, likely due

to the insufficiency of data for capturing the relationships

between features. However, as the dataset size increased, the

tested R2 for all models gradually increased. Among all

models, CatBoost emerged as the best-performing algo-

rithm. Considering the changes in R2 on the training dataset,

it can be easily observed that the difference inR2 between the

training dataset and testing dataset for the boosting algorithm

decreases as the amount of data increases. This indicates that

the boosting algorithm can effectively reduce model over-

fitting by increasing the amount of data, which means

that the generalization ability of the model is improving.

The trend observed in the tested MAE and tested RMSE

metrics (Fig. 9c, d) mirrored the pattern of the tested R2

Fig. 8 Actual vs. predicted values for XGBoost (a), CatBoost (b), MLP (c), LightGBM (d), and RF (e) algorithms
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values. The performance of all algorithms improved,

aligning with the increase in dataset size.

These results conclusively demonstrate the significant

positive impact of dataset size on the performance ofmachine

learning models, particularly in the complex BOF process. It

underscores the role of dataset sizes in applying machine

learning to the BOF process. This further emphasizes the

advantages of the boosting algorithm in large datasets.

5 Conclusions

In this comprehensive study, we rigorously evaluated five

sophisticated machine learning algorithms including three

boosting algorithms (XGBoost, LightGBM, CatBoost), an

RF and an MLP on predicting the end-point temperature in

the basic oxygen furnace process.

We conducted extensive preprocessing, correlation anal-

ysis, and feature engineering, addressing the low correlation

between features and end-point temperature. Despite this low

correlation, our approach to feature engineering, combined

with advancedBayesian-optimizedMLmodels, mitigated the

challenge, and delivered significant improvements. Among

these,Bayesian-optimizedCatBoost distinguished itself as the

most effective model with an R-squared value of 0.818 on

testing data, andBayesian-optimizedXGBoost led the highest

hit ratio (±0.1 error range), underscoring the superiority of

boosting algorithms in this domain.

We utilized an extensive dataset of over 20,000 heats,

significantly bigger than those in prior studies, encom-

passing a wide array of data variability including different

furnaces and a wide range of steel grades. We conducted a

broad-ranging analysis of how the size (spanning from 500

to 20,000 heats) of the dataset influences model perfor-

mance, uncovering a clear positive effect of dataset size on

the efficacy of BOF prediction models.

Our methodology, combining substantial data, and

advancedmachine learning techniques, serves as a foundation

for future enhancements in this area, emphasizing the critical

role of industrial-scale dataset size and advancedalgorithms in

improving predictive accuracy and operational efficiency in

manufacturing processes.

Fig. 9 Comparison of R2 (trained) (a), R2 (tested) (b), MAE (tested) (c), and RMSE (tested) (d) of each algorithm model on different size

datasets
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Appendix

See Table A1.

Acknowledgements All authors gratefully acknowledge the support

from Nanjing Iron & Steel United Co., Ltd. (NISCO), particularly for

providing a Ph.D. scholarship for this study.

Declarations

Conflict of interest The authors declare no conflict of interest.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

[1] T.A. Branca, B. Fornai, V. Colla, M.M. Murri, E. Streppa, A.J.
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