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A B S T R A C T

Accurate prediction of the martensite start temperature (Mₛ) is essential for optimising the mechanical perfor
mance of steels and enabling data-driven alloy design. This study proposes, for the first time, a physics- and 
knowledge-informed multi-branch Transformer fusion model that integrates chemical composition, physical 
features, and empirical equation-based features for precise Mₛ prediction. A curated dataset of 1100 steel samples 
was compiled from peer-reviewed studies and technical reports published between 1973 and 2023, with a pri
mary focus on structural steels, encompassing a comprehensive range of compositional and physical variables 
relevant to phase transformation behaviour. The model architecture employs dedicated multilayer perceptron 
(MLP) branches for each feature group, followed by a Transformer encoder to capture global dependencies and 
nonlinear interactions. Compared with baseline models, including conventional MLPs and lasso regression, the 
proposed model achieves superior predictive performance (RMSE = 33.9 ◦C, MAE = 14 ◦C, R² = 0.94). SHAP- 
based interpretability analysis reveals that the model identifies C, Ni, and Ceq as key contributors, forming a 
dominant Ni–Ceq–C interaction network modulated by structural descriptors. Sensitivity analyses confirm these 
trends and support the model’s physical consistency. To experimentally validate the model, dilatometry tests on 
two newly designed steels confirmed that the predicted Mₛ values (231 ◦C and 165 ◦C) closely matched the 
experimental results (238 ◦C and 169 ◦C), with deviations of only 7 ◦C and 4 ◦C, respectively. This work es
tablishes a novel, physically grounded, and interpretable machine learning framework for Mₛ prediction, high
lighting the value of integrating physics-based knowledge with advanced deep learning to accelerate alloy design 
and mechanical property optimisation.

1. Introduction

The martensite start temperature (Mₛ) is a critical parameter in the 
design and heat treatment of steels, as it determines the onset of 
martensitic transformation from austenite during rapid cooling. Accu
rate prediction of Mₛ plays a crucial role in alloy design, heat treatment 
optimisation, and microstructural control of steels [1–3].

Transportation structures and vehicles, TRIP-assisted steels are 
widely used for their strength, ductility and energy absorption. This 
response relies on metastable retained austenite, whose fraction and 
stability are tuned across alloy systems [4,5]. Accurate prediction of 
martensitic transformation, especially the Mₛ, is critical because it de
fines the window in which retained austenite forms and remains stable. 
In quenching and partitioning steels, quenching between Mₛ and the 
martensite finish temperature Mf followed by carbon partitioning 

enriches and stabilises austenite while tempering martensite, so Mₛ sets 
the target quench temperature and governs the achievable 
retained-austenite fraction [6]. In bainitic rail steels, heat treatment is 
designed around Mₛ to keep transformation in the bainitic regime and 
avoid martensite that harms rolling contact fatigue resistance [7]. 
Reliable estimation of transformation temperatures, particularly Mₛ, 
underpins the design and processing of transportation steels. Tradi
tionally, the measurement of Mₛ relies primarily on dilatometry or 
metallographic analysis [8–10]. Although these methods yield reliable 
results, they are often time-consuming and costly. To simplify the pre
diction process, numerous empirical equations have been developed 
based on the chemical composition of steels [11–22], such as the 
Andrews equation [11], Kunitake equation [12], and Steven & Haynes 
equation [13]. These equations generally adopt a linear combination of 
elemental contents to calculate Mₛ. However, the applicability of these 
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empirical models is often limited. When the steel composition exceeds a 
certain range or contains multiple complex alloying elements, their 
prediction errors tend to increase significantly [23].

To improve the accuracy of Mₛ prediction, some researchers have 
developed thermodynamic models to estimate Mₛ based on the driving 
force of phase transformation. For example, Ghosh and Olson [24]
constructed a thermodynamic model for Mₛ prediction considering the 
balance of driving force during martensitic transformation, which 
exhibited good physical interpretability. Nevertheless, this type of 
model heavily depends on thermodynamic databases and still shows 
limitations in high-dimensional multi-component alloy systems.

In recent years, machine learning has emerged as a central driver of 
alloy design and property prediction by enabling the discovery of 
complex structure–processing–property relations and by supporting 
both forward and inverse design. Lee et al. [25] developed an integrated 
machine-learning platform for thermo-mechanically controlled pro
cessed steels that incorporates 16 algorithms and 5473 industrial re
cords (combining composition and processing descriptors) to predict 
yield strength and ultimate tensile strength; seven non-linear models 
achieved acceptable hold-out performance (test-set coefficient of 
determination ≈ 0.6–0.7; mean squared error < 10⁻²), and inverse 
design based on the Non-dominated Sorting Genetic Algorithm II 
together with high-dimensional design-space visualisation identified 
high-strength candidate alloys while highlighting solution diversity. 
Chen et al. [26] built an interpretable machine-learning pipeline for 
dual-phase high-ductility automotive steels (469 records) to predict ul
timate tensile strength and total elongation; using physics-based de
scriptors (intercritical austenite fraction and austenite carbon content), 
a seven-feature gradient-boosting regressor achieved coefficients of 
determination of approximately 0.98 for ultimate tensile strength and 
0.94 for total elongation (cross-validation ≈ 0.93), identified the third 
overageing-zone stage as dominant, generalised to another production 
line, and suggested an overageing-zone-three temperature window of 
approximately 279–288 ◦C for strength–ductility balance. Capdevila 
et al. [27] first employed artificial neural networks (ANN) for Mₛ pre
diction, demonstrating superior fitting performance compared with 
traditional empirical equations. Subsequently, Lu et al. [28] incorpo
rated austenitising temperature as an auxiliary feature, which signifi
cantly improved the prediction accuracy. Wang et al. [29] proposed a 
convolutional neural network (CNN) model that integrated chemical 
compositions with multi-scale energy features, achieving high-precision 
prediction of Mₛ in complex steels. Moreover, Yan et al. [30] revealed 
that the prediction accuracy of ML models could be further enhanced by 
introducing more physical knowledge or intermediate physical features 
(AP features).

As summarised in previous studies, the methodologies for predicting 
Mₛ have evolved from early empirical equations to thermodynamic- 
based approaches and, more recently, to data-driven ML models, as 

illustrated in Fig. 1. This progression reflects a technological shift from 
simple linear formulations to physically grounded modelling and ulti
mately to multivariable ML frameworks. While each paradigm has 
contributed to the advancement of Mₛ prediction, all exhibit intrinsic 
limitations. A key direction in current research is the incorporation of 
physical principles into data-driven models, which is essential for 
improving both interpretability and generalisation.

Despite substantial progress, several challenges continue to hinder 
accurate Mₛ prediction. Most existing ML models rely solely on chemical 
composition, neglecting physical mechanisms or domain knowledge. 
Moreover, empirical equations, representing decades of metallurgical 
insight, are rarely utilised in a structured manner within ML frame
works. These limitations are compounded by small datasets, high- 
dimensional feature spaces, and restricted generalisation performance 
[31,32].

In this study, motivated by the need to enhance both accuracy and 
interpretability in Mₛ prediction, we propose a novel multi-branch deep 
learning model that, for the first time, integrates physical descriptors 
and empirical equations into a machine learning framework. Three 
types of multi-source information are incorporated: chemical composi
tion features, physical features (including valence electron concentra
tion (VEC), atomic size mismatch (Δr), mixing entropy (ΔSₘᵢₓ), and 
carbon equivalent (Ceq)), and empirical equations derived from metal
lurgical knowledge. Each feature group is processed through an inde
pendent neural network branch for targeted feature extraction, followed 
by feature fusion in an integrated layer to predict the Mₛ. Furthermore, 
the Optuna framework is employed to conduct automatic hyper
parameter optimisation, thereby further enhancing model performance 
and stability. To assess feature contributions and model interpretability, 
SHAP analysis, feature interaction visualisation, and element-wise 
sensitivity analysis were performed. Furthermore, the model’s prac
tical reliability was validated by dilatometry experiments and optical 
microscopy characterisation on two designed steels, with predicted Mₛ 
values showing excellent agreement with experimental results. The 
proposed approach exhibits excellent performance in terms of predic
tion accuracy, feature scalability, and model interpretability, providing 
a new technical route for intelligent alloy design and microstructure 
control in steels. Accordingly, the proposed framework targets the 
property space relevant to transportation steels and supports alloy and 
process design for bridge girders, rails, and vehicle safety components.

2. Methods

In this study, a high-quality dataset comprising 1100 samples was 
compiled from the literature [33–46] to develop predictive models for 
the Mₛ of steels. The input features include 15 chemical composition 
variables (C, Mn, Si, Cr, Ni, Mo, V, Co, Al, W, Cu, Nb, Ti, B, N), four 
physical features (VEC, Δr, ΔSmix, Ceq), and nine empirical equation 

Fig. 1. Progressive development of Mₛ prediction methods: empirical equations, thermodynamic models, machine learning, and physics-informed machine learning.
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features (Mₛ-Eq.1 to Mₛ- Eq.9), amounting to a total of 28 input vari
ables. Detailed descriptions of the dataset and preprocessing procedures 
are provided in the Supplementary Material under Data Collection and 
Description and Data Preprocessing.

The inclusion of chemical composition features is essential for pre
dicting Mₛ, as alloying elements strongly influence the relative stability 
of austenite (γ) and ferrite (α). Austenite-stabilising elements such as C, 
Mn, Ni, and Cr lower the free energy of the γ-phase, thereby suppressing 
the γ → α transformation and reducing Mₛ. In contrast, ferrite-stabilising 
elements like Mo and V promote α-phase stability, increasing Mₛ. These 
effects arise from changes in the chemical driving force, shifts in phase 
boundaries, and modifications in transformation kinetics due to altered 
diffusion behaviour at the γ/α interface [47]. Therefore, chemical 
composition plays a pivotal role in capturing the fundamental thermo
dynamic and kinetic mechanisms that govern Mₛ.

In addition to elemental features, four physical descriptors were 
included in the model: VEC, Δr, ΔSₘᵢₓ and Ceq. Although VEC, Δr, and 
ΔSₘᵢₓ were initially developed in the context of high-entropy alloys 
(HEAs) to describe phase stability, lattice distortion, and configurational 
entropy [48,49], their physical principles are equally applicable to 
conventional steels. These features represent the multi-element in
teractions that influence phase transformation behaviour and mechan
ical performance in complex alloy systems. Ceq, by contrast, is an 
empirical engineering parameter widely used to estimate hardenability 
and weldability based on the combined effect of various alloying ele
ments. It indirectly reflects phase transformation tendencies and is thus 
relevant to Mₛ prediction. Together, these physical features offer com
plementary insights beyond basic composition, bridging theoretical 
understanding and practical alloy design.

The four physical features are composition-derived and therefore 
available for all records, which ensures consistency across literature 
sources and avoids bias from sparsely reported processing metadata. 
Valence electron concentration VEC reflects band filling and phase sta
bility and is widely used to discriminate ferrite austenite tendencies, 
which in turn governs transformation paths and the attainable 
martensite fraction that controls strength and crash energy absorption in 
automotive components [50]. Atomic size mismatch Δr quantifies lat
tice distortion and solid solution strengthening, both of which affect 
yield strength and impact toughness of structural steels [51]. The 
configurational mixing entropy ΔSmix is a proxy for the chemical 
complexity that stabilises phases and delays transformation, which in
fluences the stability of retained austenite and the balance of strength 
and ductility in advanced high-strength steels [52]. The carbon equiv
alent Ceq is a standard index for hardenability and weldability in 
structural practice; it correlates with the ease of forming martensite 
under cooling in thick sections and with heat-affected zone hardness and 
cold cracking risk in welded bridges and vehicle frames [53]. Prior 
austenite grain size and other microstructural variables were not 
included in the primary model because they are reported inconsistently 
across sources, depend strongly on processing history, and are not 
available for a large fraction of the dataset. Since the target variable is 
the Mₛ, which is primarily governed by chemical thermodynamics and 
the associated driving force, composition-based descriptors provide a 
robust and generalisable basis for prediction, while avoiding loss of 
coverage and potential information leakage from process-specific 
quantities.

Furthermore, empirical equations (Mₛ-Eq.1 to Mₛ-Eq.9) derived from 
previous studies were integrated into the model to leverage decades of 
metallurgical knowledge. These formulae encode well-established re
lationships between alloying elements and Mₛ, providing additional 
predictive power. By combining chemical, physical, and empirical in
puts, the proposed model achieves improved accuracy and general
isability across a wide range of steel grades.

The calculation methods of the physical features are presented in 
Eqs. (1–4), and those of the empirical equation features are shown in 
Table 1. The target variable, Mₛ, represents the experimentally 

measured martensite start temperature. All features and the target were 
standardised to enhance training efficiency and numerical stability. 

VEC =
∑

Ci • VECi (1) 

where Ci is the atomic fraction of the i-th element, and VECi is the 
valence electron count of the i-th element [48]. 

Δr =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

Ci •
(

1 −
ri

r

)2
√

(2) 

where ri is the atomic radius of the i-th element, and r =
∑

Ci • ri is 
the average atomic radius [54]. 

ΔSmix = − R •
∑

Ci • ln(Ci) (3) 

where R is the gas constant (8.314 J/mol⋅K), and Ci is the atomic frac
tion of the i -th element [55]. 

Ceq = C+
Mn
6

+
Cr + Mo + V

5
+

Ni + Cu
15

(4) 

where C, Mn, Cr, Mo, V, Ni, and Cu are the weight percentages of the 
respective elements [56].

To accurately model the potential nonlinearities and interactions 
among these diverse features, a multi-branch Transformer fusion 
regression model was designed (as illustrated in Fig. 2). This model 
initially processes three categories of input features through separate 
MLP branches, each responsible for extracting high-level representa
tions. These branches consist of several linear layers, ReLU activation 
functions, and dropout layers, and are tailored to handle the chemical 
composition inputs (15 dimensions), physical features (4 dimensions), 
and empirical equation features (9 dimensions), respectively. The 
extracted feature vectors from the three branches are then projected to a 
common dimension via linear transformations and subsequently fused 
using a Transformer encoder. This encoder incorporates multi-head self- 
attention mechanisms and feedforward neural networks, enabling 
effective modelling of global dependencies and complex interactions 
among features. The encoder output is subjected to mean pooling, fol
lowed by a fully connected regression layer that outputs the predicted 
Mₛ value.

Hyperparameters were optimised using Optuna. The selected 
configuration used for all reported results is given in Table 2, covering 
the branch widths, depths and dropout for each feature branch, the 
Transformer settings, and the main training parameters.

The Transformer is used only as a fusion module that operates on the 
three branch embeddings. The effective sequence length is therefore L 
= 3, so the self-attention complexity scales as O(L²) and is negligible in 

Table 1 
Summary of empirical equations (Mₛ-Eq.1 to Mₛ-Eq.9) for predicting Mₛ in 
steels.

No. Equation Ref.

1 Ms = 539 − 423C − 30.39Mn − 12.14Cr − 17.69Ni − 7.46Mo
[11]

2 Ms = 531 − 391.2C − 43.3Mn − 21.8Ni − 16.2Cr
[15]

3 Ms = 499 − 292C − 32.4Mn − 22Cr − 16.2Ni − 10.8Si − 10.8Mo
[20]

4 Ms = 561 − 476C − 33Mn − 17Cr − 17Ni − 21Mo
[16]

5 Ms = 560.5 − 407.3C − 7.3Si − 37.8Mn − 20.5Cu − 19.5Ni −
19.8Cr − 4.5Mo [22]

6 Ms = 521 − 353C − 22Si − 24.3Mn − 7.7Cu − 17.7Cr − 17.3Ni −
25.8Mo [12]

7 Ms = 550 − 361C − 39Mn − 35V − 20Cr − 17Ni − 10Cu − 5Mo +

15Co − 30Al [14]

8 Ms = 550 − 350C − 40Mn − 35V − 20Cr − 17Ni − 10Cu − 10Mo −

10W + 15Co [18]

9 Ms = 538 − 317C − 33Mn − 28Cr − 17Ni − 11Si − 11Mo − 11W
[21]
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both memory and time. This placement allows each branch to attend to 
the others and to capture higher-order cross-branch dependencies that 
are not well represented by simple concatenation, while keeping the 
computational footprint low. To control capacity and avoid overfitting, 
we use a single encoder block with a small hidden size together with 
dropout. Because the attention acts on a fixed and short fusion sequence 
rather than on the full set of 28 raw features, the approach remains 
efficient as the number of raw inputs grows, provided they are encoded 
within the same three branches. In ablation studies, we compare this 
fusion module with an additive attention fusion that replaces the 
encoder while keeping the branches unchanged, and with a graph neural 
network that treats the 28 features as nodes; the results reported in the 
revised manuscript support the choice of the Transformer fusion.

To comprehensively evaluate the performance of the proposed 
approach, five baseline models were established for comparative anal
ysis: (1) an additive-attention fusion model that retains the three MLP 
branches and replaces the Transformer encoder with a single-head 
Bahdanau-style attention that produces a weighted sum of the branch 
embeddings; (2) a graph neural network model in which the 28 input 
features are treated as nodes in a fully connected graph and information 
is propagated by a two-layer graph attention network with global mean 
pooling; (3) an MLP model that integrates chemical composition, 
physical features, and empirical equations as concatenated inputs 
without branching; (4) an MLP model based solely on chemical 
composition features; and (5) a Lasso Regression model, which aims to 
discover explicit mathematical expressions that relate input features to 
Mₛ. All neural network models were optimised using the Optuna 

framework for hyperparameter tuning under an identical search proto
col, ensuring fairness and optimal performance, and were assessed 
through five-fold cross-validation to evaluate their robustness and 
generalisation capability. The optimal hyperparameters for each model 
are provided in the Supplementary Material under Hyperparameter 
Optimisation.

Evaluation metrics included mean squared error (MSE), mean ab
solute error (MAE), root mean squared error (RMSE), and the coefficient 
of determination (R²), offering a comprehensive view of model perfor
mance in terms of both error magnitude and predictive correlation. The 
formulas for these metrics are as shown in Eqs. (5–7). 

R2 = 1 −

∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (5) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(yi − ŷi)

2

√

(6) 

PCC =
n(

∑
xy) − (

∑
x)(

∑
y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[
n
∑

x2 − (
∑

x)2
][

n
∑

y2 − (
∑

y)2
]√ (7) 

The methodological framework presented herein combines the 
nonlinear modelling capabilities of deep learning with the global feature 
interaction strengths of the Transformer architecture, offering a robust 
and generalisable approach for predicting Ms in complex material sys
tems. The inclusion of baseline models serves to validate the effective
ness of the proposed method and provides theoretical and practical 
guidance for model selection in future applications such as material 
design and composition optimisation.

3. Results and discussion

3.1. Model training

To comprehensively evaluate the predictive performance of the 
proposed multi-branch Transformer fusion model, five representative 
models were selected for comparison, namely an additive-attention 
fusion model, a graph neural network model, an MLP-Combined 
model that concatenates all features without branching, an MLP- 
Chemical model that uses only chemical composition features, and a 
Lasso Regression model. The prediction results and performance metrics 
of each model are illustrated in Fig. 3.

Fig. 2. Architecture of the multi-branch transformer fusion model for Mₛ prediction.

Table 2 
Hyperparameters for the transformer fusion model.

Parameter Branch 1 
(Composition)

Branch 2 
(Physical 
Features)

Branch 3 
(Empirical 
Formulas)

Transformer 
Fusion

hidden 
units

128 80 112 ​

depth 2 1 1 ​
dropout 0.226 0.124 0.278 ​
learning 

rate (lr)
0.00071

batch_size 64
activation ReLU
tf_d_model 128
tf_heads 4
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As shown in Fig. 3(a), the proposed Transformer fusion model ach
ieved strong predictive performance on the test set, with an RMSE of 
33.9 ◦C, MAE of 14 ◦C, and an R² of 0.94. These results indicate that the 
model effectively captures complex non-linear relationships and cross- 
branch interactions among the input features.

The additive-attention fusion model in Fig. 3(b) attained an RMSE of 
30.9 ◦C, MAE of 21 ◦C, and R² of 0.92. Although the RMSE is slightly 
lower, the increased MAE and decreased R² suggest less consistent fi
delity across samples relative to the Transformer fusion, indicating that 
multi-head self-attention provides added value for this task.

The graph neural network model in Fig. 3(c) yielded an RMSE of 49 
◦C, MAE of 32 ◦C, and R² of 0.79. Treating the 28 input features as nodes 
in a fully connected graph did not match the accuracy of the branch- 
level fusion, which may reflect the absence of a well-defined physical 
adjacency structure among features.

The MLP-Combined model in Fig. 3(d), which integrates chemical 

composition, physical features, and empirical equation features without 
branching, achieved an RMSE of 33.9 ◦C, MAE of 17 ◦C, and R² of 0.88, 
indicating a marginally inferior fitting capability relative to the Trans
former fusion.

The MLP-Chemical model in Fig. 3(e), which uses only chemical 
composition inputs, resulted in an RMSE of 35 ◦C, MAE of 20.6 ◦C, and 
R² of 0.86, highlighting the benefit of incorporating physical features 
and empirical equations.

The lasso regression model in Fig. 4(f) automatically derived math
ematical expressions describing the relationship between Mₛ and the 
input features. The best-discovered equation is presented as Eq. (8). 
While lasso regression offers transparent and interpretable physical re
lationships, its predictive accuracy lags behind the deep learning 
models, with an RMSE of 45 ◦C, MAE of 36 ◦C, and R² of 0.85. This 
suggests that symbolic regression is better suited for discovering concise 
physical laws but is limited in modelling complex feature interactions. 

Fig. 3. Comparison of test-set Mₛ prediction across six models: (a) Transformer fusion, (b) additive attention fusion, (c) graph neural network, (d) MLP Combined, (e) 
MLP Chemical, and (f) Lasso regression; the Transformer shows the best overall accuracy (R² = 0.94, MAE = 14 ◦C, RMSE = 33.9 ◦C).

Fig. 4. (a) Training and testing loss curves for the Transformer fusion model, demonstrating stable convergence without overfitting. (b) Ablation study results for the 
Transformer fusion model, indicating the contribution of each feature group (composition, physical, empirical) to overall model performance in terms of RMSE.
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Ms = 419.5 − 195.5C − 0.27Cr − Co − 29.66C⋅Mn 

− 13.4C⋅Ni − 2.99Mn⋅Cr − 1.29Si2 − 1.5Cr⋅Ni − 0.5Ni2 

+7.25Mo⋅Cu+3.3Mo⋅Nb+53.5V⋅Cu+2592.5Al⋅Cu+90W⋅Nb+

11.2W⋅Ti+118.7Nb⋅Ti (8) 

Taken together, the results across all five comparators, namely the 
additive attention fusion model, the graph neural network model, the 
MLP-Combined model, the MLP-Chemical model, and the Lasso 
regression model, show that the multi-branch Transformer fusion offers 
the best overall balance of accuracy and robustness. It attains the highest 
R² (0.94) and the lowest MAE (14 ◦C) while remaining competitive in 
RMSE, notwithstanding the slightly lower RMSE of the additive- 
attention baseline, which comes at the cost of reduced R² and 
increased MAE. These findings justify selecting the Transformer as the 
primary architecture for Mₛ prediction.

3.2. Model training dynamics and ablation study

To further validate the training performance of the proposed multi- 
branch fusion Transformer model and assess the significance of each 
feature branch, the training and validation loss curves were plotted, 
alongside an ablation study. The results are illustrated in Fig. 4.

Fig. 4(a) presents the training and validation loss trajectories of the 
Transformer model. It can be observed that both the training and vali
dation losses decrease sharply during the initial epochs and subse
quently stabilise, with no evident signs of overfitting. This indicates 
good convergence and generalisation capabilities of the model 
throughout the training process. The use of Optuna for hyperparameter 
optimisation proved effective in fine-tuning the model, ensuring robust 
performance.

To evaluate the contribution of each feature branch to the Trans
former model, an ablation study was performed by removing in turn the 
chemical composition branch No-Comp, the physical features branch 
No-Phy, and the empirical equations branch No-Emp. The ablation was 
repeated over five independent 80–20 train to test splits, with retraining 
for every split and every condition. Fig. 4(b) reports the mean test RMSE, 
and the error bars indicate the standard deviation over the five runs. The 
complete model Full achieved an RMSE of 33.9 ◦C. Removing chemical 
composition increased the RMSE to 88.2 ◦C, indicating its dominant role 
in Mₛ prediction. Excluding the empirical equations branch and the 
physical features branch resulted in RMSEs of 71.2 ◦C and 55.3 ◦C, 
respectively. These results confirm that multi-source feature fusion im
proves accuracy, with chemical composition providing the largest 
contribution and the other branches offering additional but smaller 
gains.

The combined analysis of the loss curves and ablation study verifies 
the effectiveness and stability of the multi-branch fusion Transformer 
model, showcasing its potential for performance prediction in complex 
material systems.

3.3. SHAP analysis for model interpretability

To gain deeper insights into the internal mechanism of the Trans
former fusion model, SHAP (SHapley Additive exPlanations) analysis 
was conducted, as shown in Fig. 5. This beeswarm plot visualises the 
individual contributions of each feature to the predicted Mₛ values 
across the dataset. The red and blue colour gradients indicate high and 
low standardised feature values, respectively, allowing interpretation of 
both the magnitude and direction of each feature’s effect. For clarity, we 
present a single SHAP beeswarm after ranking features by mean absolute 
SHAP. Features with very small contributions, including B, Ti, and Nb, 
are omitted from the main panel.

C exhibits the most substantial impact on Mₛ predictions. Higher C 

content (shown in red) consistently shifts the predicted Mₛ towards 
lower values, reflecting its well-established role in lowering Mₛ due to 
increased hardenability. Ni contributes significantly as well, with lower 
Ni content (in blue) generally associated with higher Mₛ predictions. 
This aligns with Ni’s function as an austenite stabiliser, which lowers Mₛ 
when present in higher amounts. Mn, another austenite stabiliser, 
demonstrates a behaviour similar to Ni; lower Mn levels (blue) elevate 
the predicted Mₛ, reflecting reduced austenite stability. N, though 
generally present in small amounts, shows a notable influence with 
higher N content (red) decreasing Mₛ, consistent with its strengthening 
and austenite-stabilising effects. Si shows a negative impact on Mₛ 
predictions, with higher Si content (red) associated with lower predicted 
Mₛ. This is likely due to Si’s known effect of suppressing carbide for
mation, which leads to more carbon retained in austenite. The increased 
carbon stabilises austenite and lowers the Mₛ. Although Si also promotes 
ferrite formation, its effect on carbide suppression appears to dominate 
in this case. Cr exhibits a positive contribution to Mₛ predictions, with 
higher Cr content (red) generally associated with increased Mₛ. This may 
be related to its role in promoting ferrite formation and reducing 
austenite stability under certain conditions. In this dataset, the effect of 
Cr appears to favour a higher Mₛ when its content is elevated.

For the remaining alloying elements, such as V, Mo, Cu, Co, Al, and 
W, their SHAP distributions suggest more subtle contributions. In gen
eral, elements like Al and W tend to lower Mₛ when present in higher 
concentrations, while V, Mo, Cu, Co, Al, and W show minor positive 
effects, raising Mₛ slightly.

For the physical features, VEC and ΔSₘᵢₓ both exhibit negative cor
relations with Mₛ. Higher VEC stabilises austenite through increased 
electron concentration, while greater mixing entropy promotes disor
dered structures, both leading to reduced Mₛ. Ceq shows a strong 
negative impact, highlighting the dominant role of carbon and substi
tutional alloying elements in suppressing martensitic transformation. Δr 
also displays a negative trend, where larger atomic size mismatches 
correlate with lower Mₛ, likely due to enhanced lattice distortion 

Fig. 5. SHAP beeswarm plot for the Transformer fusion model illustrating the 
contribution and directionality of each feature towards the predicted Mₛ, with 
red and blue indicating higher and lower standardised feature values, 
respectively.
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stabilising the austenitic phase.
To further quantify these findings, the next section will conduct a 

comprehensive element-wise sensitivity analysis, aiming to clarify the 
precise influence and relative strength of each key element on the Mₛ 
temperature. This analysis will help validate the SHAP interpretation 
results and support informed alloy design strategies.

Fig. 6 presents the chord diagram generated from SHAP interaction 
values, illustrating the collaborative interaction patterns among 
different features in the prediction of Mₛ. Each arc represents a specific 
feature, with the arc length indicating the proportion of its contribution 
to the total feature interactions. The connecting chords between arcs 
reflect the interaction strength between two features. In this diagram, 
colours are applied solely to distinguish between individual features for 
visual clarity, without encoding feature categories.

To enhance interpretability, empirical equation features (Mₛ-Eq.1 to 
Mₛ-Eq.9) are excluded from this diagram, as these equations are derived 
from chemical compositions and exhibit inherently strong interactions 
with elemental features, which would otherwise clutter the visual
isation. Additionally, features with negligible contributions have been 
omitted to maintain diagrammatic simplicity and clarity. For the 
avoidance of doubt, these empirical quantities are outputs of 
composition-based martensite start equations and are algebraic trans
forms of the same elemental inputs. They are not application-specific 
indices, such as weldability measures and therefore their omission has 
no bearing on transportation-relevant interpretations. The interactions 
that matter for transportation steels, for example, those involving C, Ni 
and Ceq together with the physical descriptors, remain fully represented 
and the qualitative interaction pattern is unchanged.

The overall structure of the diagram is centred around the Ni–Ceq–C 
axis, with Ni serving as the dominant hub connected to multiple high- 
impact interactions. This central triad not only reflects their strong in
dividual contributions to Mₛ prediction but also underscores their joint 
influence as revealed by the model’s internal representation.

The strongest interaction is observed between Ni and Ceq. Although 
Ni is mathematically a component of Ceq [56], this interaction likely 
reflects more than formulaic overlap. The model appears to rely on both 
variables simultaneously, suggesting that Ni not only influences Mₛ 
directly but also modulates the interpretation of Ceq within the pre
diction process. This synergy may be due to Ni’s dominant variation in 
the dataset or its physical role in austenite stabilisation.

The second-strongest pair, Ni–Δr, may reflect the combined influ
ence of solute atom size mismatch and Ni’s effect on stacking fault en
ergy or local strain fields [57]. While this interaction aligns with known 
mechanisms in deformation-induced transformations, the specific role 

of Δr in the presence of Ni requires further study.
The Ni–C pair reflects a well-established synergy: Ni enhances car

bon solubility and delays carbide formation, increasing the stability of 
austenite and suppressing martensitic transformation. This interaction 
has been extensively reported in both bainitic and martensitic steels 
[58].

The Ni–VEC interaction suggests a connection between alloying- 
driven changes in electron concentration and phase stability. VEC is 
known to influence phase formation, particularly in complex steels and 
high-entropy alloys [48], but its joint effect with Ni on Mₛ remains to be 
clarified through electronic structure studies.

The C–N interaction is consistent with the behaviour of interstitial 
elements: both carbon and nitrogen stabilise austenite, though through 
different mechanisms: C via thermodynamics and N through local lattice 
strain [59,60]. Their combined effect may create non-additive in
fluences on transformation temperatures.

The interactions VEC–Ceq, Δr–Ceq, and C–Δr suggest that Ceq’s 
predictive power may be modulated by underlying physical factors such 
as electronic density and lattice distortion. However, these patterns are 
data-driven discoveries rather than mechanisms with established 
metallurgical interpretation, and should be viewed as hypotheses for 
further investigation.

Finally, interactions such as Ni–ΔSₘᵢₓ and C–VEC appear repeatedly 
in the model despite the absence of clear literature linking them directly 
to Mₛ. Their consistent contribution may reflect higher-order correla
tions or latent feature dependencies learned by the model, and thus 
merit additional theoretical or experimental exploration.

Overall, the chord diagram highlights that Mₛ prediction relies not 
only on individual feature strengths but also on learned in
terdependencies between them, some of which correspond well to 
established physical theory, while others represent novel insights 
potentially guiding future work.

3.4. Sensitivity analysis of individual elements

This set of sensitivity analysis plots, as shown in Fig. 7, illustrates the 
influence trends of various elemental concentrations on Mₛ across 
different compositional ranges. It further validates the model’s ability to 
learn the intricate relationships between features and performance, 
while also cross-referencing with established metallurgical mechanisms 
from the literature to ensure scientific robustness. The following dis
cussion elaborates on these effects in detail, structured according to 
elemental categories and supported by relevant studies.

Firstly, C exhibits a pronounced negative influence on Mₛ. As its 
content increases from 0 to approximately 2 wt%, Mₛ significantly de
creases. This trend correlates strongly with carbon’s high solubility in 
austenite. C stabilises the austenitic phase by occupying interstitial lat
tice sites, thereby suppressing the transformation to martensite [59]. 
Moreover, carbon increases the free energy difference between phases, 
further lowering Mₛ [61].

Both Mn and Si demonstrate negative effects, albeit with lesser 
magnitudes compared to carbon. Mn, up to 10 wt%, consistently reduces 
Mₛ by stabilising austenite. This is achieved through lowering the 
austenite-to-ferrite transformation temperature and increasing carbon 
solubility and stacking fault energy, which together suppress martensitic 
transformation [62]. Si (up to ~3 wt%) shows a similar trend, which is 
largely attributable to its indirect influence on carbon diffusion. As Si 
diffuses slowly within austenite, it inhibits carbide precipitation, 
thereby elevating carbon content within austenite and suppressing Mₛ 
[63]. Despite Si’s inherent ferrite-stabilising effect thermodynamically, 
its interaction with carbon diffusion leads to an overall reduction in Mₛ.

Cr, within the range of 0–15 wt%, demonstrates a positive effect on 
Mₛ, with values rising as Cr content increases. This is attributed to Cr’s 
role as a ferrite-stabilising element, which impedes the formation of 
austenite, thereby facilitating the martensitic transformation [56]. Cr 
also contributes through carbide formation, depleting carbon from the 

Fig. 6. Chord diagram illustrating the top 30 strongest feature interactions in 
the Mₛ prediction model, highlighting the dominant Ni–Ceq–C interaction 
network alongside key contributions from physical features such as Δr, ΔSmix 
and VEC.
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austenitic matrix and further promoting martensite formation [64].
The influence of Ni is particularly pronounced. As Ni content in

creases from 0 to 25 wt%, Mₛ decreases sharply by nearly 100◦C. Ni is a 
potent austenite stabiliser, significantly lowering the free energy of 
austenite and broadening the austenitic phase field, which suppresses 
martensitic transformation [65]. This mechanism underpins the wide
spread application of Ni in austenitic stainless steels.

Mo and V exhibit positive influences on Mₛ, with Mo steadily 
increasing Mₛ up to ~6 wt% and V showing a notable rise in Mₛ within 
the 0–0.5 wt% range. Mo contributes through the formation of carbides 
(such as Mo₂C), which deplete carbon in austenite and destabilise it, 
enhancing martensite formation [66]. Mo also improves hardenability 
and optimises transformation pathways [67]. V facilitates similar effects 
via VC carbide precipitation, promoting grain refinement and reducing 
austenite stability, thereby elevating Mₛ [68].

Co increases Mₛ within the 0–10 wt% range, consistent with its role 
in destabilising austenite and enhancing ferrite stability. Co reduces the 
stability of the austenitic phase and narrows its compositional range, 
thereby promoting martensitic transformation, which is beneficial in 
high-strength steels and superalloys [69].

Al and W both enhance Mₛ. Al, particularly effective up to ~3 wt%, 
promotes Mₛ by stabilising ferrite and increasing the free energy dif
ference between phases, which accelerates martensite formation [70]. 
W exhibits a more moderate effect within the 0–12 wt% range, primarily 
due to its carbide-forming ability (e.g., WC), which depletes carbon from 
the matrix and gradually destabilises austenite [71].

The effects of Cu and Nb are relatively modest but positive. Cu 
contributes by refining grains and enhancing precipitation hardening, 
which marginally increases Mₛ [72]. Nb, through the formation of NbC 
carbides, reduces carbon content in austenite and improves 
high-temperature strength and toughness, thereby slightly elevating Mₛ 
[73].

Ti and B, despite their low concentrations, exhibit appreciable effects 
on Mₛ. Ti promotes Mₛ through carbide precipitation (e.g., TiC), which 
removes carbon from austenite and destabilises it [74]. B, even in trace 
amounts, alters grain boundary characteristics and significantly mod
ifies transformation kinetics, facilitating martensitic transformation 
[75].

Finally, N displays a marked negative influence on Mₛ. As N content 
increases (up to ~1.8 wt%), Mₛ decreases substantially. Like C, N sta
bilises austenite by dissolving interstitially within its lattice, signifi
cantly reducing its free energy and suppressing martensitic 
transformation [60]. Additionally, N forms nitrides, further enhancing 
austenite stability [76].

These sensitivity analyses reveal the nuanced influence of elemental 

variations on Mₛ also align closely with metallurgical theories and 
experimental observations. This further validates the Transformer 
fusion model’s capacity to capture complex feature-performance re
lationships, providing a robust theoretical foundation for alloy design, 
performance optimisation, and heat treatment strategies.

3.5. Experimental validation via dilatometry and microstructural 
characterisation

To evaluate the predictive capability of the developed Transformer- 
based model for the Mₛ, two designed steel alloys with distinct chemical 
compositions were experimentally investigated. The chemical compo
sitions of the two steels are provided in Table 3. Alloy A was designed as 
a high-Si, medium-Ni martensitic composition with a comparatively 
higher Mₛ. The combination of Si and Al improves tempering resistance 
and oxidation resistance, while Mo supports strength at elevated tem
perature. This chemistry is representative of high-strength components 
that experience thermal cycling and dynamic loading in transport sys
tems, for example energy-absorbing parts and spring-type hardware in 
under-bonnet environments. Alloy B was designed as a Ni- and Co-rich 
martensitic composition with a lower Mₛ. The higher Ni and Co 
depress Mₛ and improve toughness after tempering, and Al promotes 
precipitation hardening with Ni during tempering, providing hot 
strength and stability. This design motif is relevant to powertrain and 
exhaust-adjacent components and to thermally loaded fasteners in 
transportation applications. Together the two alloys span contrasting 
transformation windows and provide a practical validation of the model 
under heat-resistant design conditions pertinent to transportation use.

Dilatometry tests were conducted using a DIL 805 A/D dilatometer 
on cylindrical specimens (4 mm diameter × 10 mm length) machined 
from the hot-rolled plate. Each specimen was austenitised at 1000 ◦C for 
30 min to ensure Complete transformation to austenite, then cooled to 
room temperature under argon at a constant rate of 5 ◦C/s. The resulting 
dilatation-temperature curves were analysed to determine the experi
mental Mₛ, defined as the temperature at which a deviation from linear 
thermal contraction occurs.

Microstructural characterisation was carried out using a Leica 

Fig. 7. Sensitivity analysis showing how variations in individual alloying element concentrations (wt%) influence the predicted Mₛ.

Table 3 
Chemical compositions of the experimental alloys used for model validation (wt 
%).

Alloy C Si Ni Al Mo Mn Co Cr

A 0.72 3.87 3.4 1.39 0.21 0.02 ＜0.01 ＜0.01
B 0.45 0.03 13.2 2.63 0.15 0.15 3.99 ＜.005
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Microsystems DM2500M upright optical microscope equipped with a 
DFC295 digital camera. Images were acquired using Leica Application 
Suite software, and minor post-processing (e.g., brightness/contrast 
adjustment, cropping, and scale bar insertion) was performed using 
GIMP and ImageJ.

For Alloy A, the martensitic transformation began at approximately 
238 ◦C (Fig. 8(a)), while Alloy B exhibited an Mₛ of 169 ◦C (Fig. 8(c)). 
Optical microscopy was used to characterise the final microstructures. 
As shown in Fig. 8(b) and (d), both alloys displayed a typical lath 
martensite morphology after quenching. Notably, Alloy B showed a finer 
and denser structure, consistent with its lower transformation 
temperature.

To further validate generalisability, the two newly designed alloys 
were assessed. Fig. 9 compares the experimental Mₛ values with the 
predictions of the three models. The Transformer fusion model predicted 
231 ◦C for Alloy A and 165 ◦C for Alloy B, in close agreement with the 
measured values of 238 ◦C and 169 ◦C, yielding absolute deviations of 7 
◦C and 4 ◦C. The additive attention fusion model produced 224 ◦C and 
178 ◦C for Alloy A and Alloy B, corresponding to deviations of 14 ◦C and 
9 ◦C. The MLP Combined model produced 255 ◦C and 158 ◦C, with 
deviations of 17 ◦C and 11 ◦C. These comparisons indicate that, for the 
available validation alloys, the Transformer fusion model provides the 
most accurate predictions.

4. Conclusion

This study proposed a novel multi-branch Transformer fusion model 
to predict the Mₛ in steels by integrating chemical composition, physical 
features, and empirical formula-based features. The model architecture, 
which combines individual MLP branches with Transformer-based 
attention mechanisms, effectively captures complex nonlinear 

relationships and global feature interactions, achieving superior pre
dictive performance (RMSE = 33.9◦C, MAE = 14◦C, R² = 0.94) 
compared to traditional MLP-based models and lasso regression 
approaches.

The ablation study demonstrated the essential contributions of each 
feature group, revealing that chemical composition serves as the pri
mary determinant of Mₛ, while physical features and empirical equa
tions significantly enhance predictive accuracy when incorporated 
within the Transformer fusion framework. This highlights the impor
tance of multi-source feature integration in modelling complex metal
lurgical phenomena.

Furthermore, SHAP-based interpretability analysis provided critical 
insights into feature contributions and interactions, identifying C, Ni, 

Fig. 8. Experimental Validation of predicted Mₛ values and corresponding microstructures for both alloys. (a) Dilatometry cooling curve for Alloy A showing Mₛ 
≈ 238 ◦C; (b) optical micrograph for Alloy A. (c) Dilatometry cooling curve for Alloy B showing Mₛ ≈ 169 ◦C; (d) optical micrograph for Alloy B. Both alloys exhibit a 
fully martensitic microstructure after quenching.

Fig. 9. Experimental and predicted Mₛ for Alloys A and B using Transformer 
fusion, additive attention fusion, and MLP Combined.

P. Wang and G.M.A.M. El-Fallah                                                                                                                                                                                                           Materials Today Communications 49 (2025) 113743 

9 



and Ceq as key influencing factors in Mₛ prediction. The chord diagram 
of feature interactions elucidated the dominant Ni–Ceq–C interaction 
network, as well as the moderating roles of physical features such as Δr 
and VEC, thereby validating the model’s alignment with established 
metallurgical principles.

Element-wise sensitivity analysis further corroborated the model’s 
ability to accurately capture the directional influence and relative 
strength of alloying elements on Mₛ, consistently reflecting classical 
metallurgical understanding. These results confirm that the proposed 
Transformer fusion model not only achieves high predictive accuracy 
but also offers mechanistic interpretability, bridging data-driven 
modelling with fundamental materials science.

Experimental validation on two designed steels confirmed the 
model’s high predictive accuracy, with predicted Mₛ values (231 ◦C and 
165 ◦C) showing excellent agreement with experimental measurements 
(238 ◦C and 169 ◦C), demonstrating its practical applicability and reli
ability for guiding alloy design.

Overall, this work demonstrates the potential of Transformer based 
architectures for advanced materials property prediction, providing a 
robust and interpretable framework for alloy design and optimisation. 
Future work may incorporate microstructural characteristics and 
thermo mechanical processing parameters to improve generalisation, 
and may address transportation applications by embedding service 
temperature histories and section thickness to represent cooling rate 
effects in infrastructure steels, by coupling the Mₛ predictor with process 
windows for press hardening and quenching and partitioning in vehicle 
components, and by including weldability descriptors such as carbon 
equivalent variants and surrogates for heat affected zone hardness and 
cracking susceptibility. External validation on bridge steels, rail grades, 
and press-hardened components will be undertaken to assess general
isation and practical utility.
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