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• Built a stacking model (XGBoost, RF, 
GBDT, MLP) for DBTT prediction (R² =
0.96).

• Identified dose, temperature, Ta, W, and 
Cr as key factors for DBTT evolution.

• DBTT peaks from 150 to 300 ◦C and 
>30 dpa, then drops above 350 ◦C due 
to recovery.

• Ta and W reduce DBTT by stabilising 
precipitates and limiting defect growth.

• SHAP shows that W lowers DBTT via 
solid solution strengthening at 6–9 % Cr 
and 0–0.04 % Ta.

A R T I C L E  I N F O

Keywords:
Reduced activation ferritic martensitic (RAFM) 
steels
ductile-to-brittle transition temperature 
(DBTT)
Machine learning
GBDT
XGBoost
Random forest
Artificial neural network

A B S T R A C T

This study develops a stacking ensemble machine learning model to predict ductile-to-brittle transition tem
perature (DBTT) in irradiated Reduced-Activation Ferritic-Martensitic (RAFM) steels. Using a dataset of 490 
irradiation cases, the model integrates XGBoost, Random Forest (RF), Gradient Boosting Decision Tree (GBDT), 
and Multi-Layer Perceptron (MLP), achieving a high predictive accuracy (R² = 0.96) and outperforming indi
vidual models. The results highlight the significant influence of irradiation dose and temperature on DBTT. 
Beyond 30 dpa, defect accumulation causes a sharp DBTT increase, while irradiation temperature exhibits a 
nonlinear effect, peaking at 150–300 ◦C due to radiation-enhanced precipitation and declining above 350 ◦C as 
defect recovery improves ductility. Additionally, alloying elements play a crucial role: Ta and W help mitigate 
embrittlement, moderate Cr (4–6 wt. %) increases DBTT, and higher Cr levels (>6 wt. %) reduce it at elevated 
temperatures. SHAP analysis reveals that W is particularly effective in reducing embrittlement in alloys with 
moderate Cr (6–9 wt. %) and low Ta, while higher Cr concentrations (>6 wt. %) help stabilise DBTT at elevated 
temperatures. To enable practical alloy design, a genetic algorithm was combined with the model to optimise 
steel compositions under defined irradiation conditions (200–350 ◦C, 10 dpa). The approach successfully 
identified candidate alloys with predicted DBTT values below 50 ◦C. This study provides a robust predictive 
framework for understanding and optimising DBTT in irradiated RAFM steels, offering valuable insights into 
their performance in next-generation nuclear reactors.
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1. Introduction

Reduced-activation ferritic-martensitic (RAFM) steels, known for 
their excellent mechanical properties and radiation resistance, have 
emerged as key structural materials for future fusion reactors and 
advanced nuclear applications. However, radiation exposure signifi
cantly alters their mechanical behaviour, particularly the ductile-to- 
brittle transition temperature (DBTT), which defines the threshold 
temperature below which the material transitions from ductile to brittle 
fracture. The shift in DBTT under irradiation is a crucial factor that limits 
the operational reliability of RAFM steels, as it determines the lower 
boundary of their service temperature window [1,2]. The primary cause 
of DBTT elevation in RAFM steels is radiation embrittlement, which 
arises from microstructural modifications induced by neutron irradia
tion, including defect accumulation, phase transformations, and solute 
segregation at grain boundaries [3–6]. These radiation-induced phe
nomena collectively degrade the fracture toughness of RAFM steels, 

increasing their susceptibility to brittle fracture and ultimately 
restricting their service life in nuclear environments [7].

Extensive research has been conducted to investigate the mecha
nisms of radiation embrittlement and its influence on DBTT shifts in 
RAFM steels. It has been well established that neutron irradiation gen
erates point defects, including vacancies and self-interstitial atoms 
(SIAs), which subsequently aggregate to form defect clusters, dislocation 
loops, and voids [8–10]. These irradiation-induced defects impede 
dislocation motion, reducing plastic deformation capability and causing 
an increase in DBTT [11,12]. Additionally, radiation-induced segrega
tion (RIS) and precipitate evolution further contribute to embrittlement 
[13]. RIS leads to the migration of solute elements, such as phosphorus 
and silicon, towards grain boundaries, weakening intergranular cohe
sion and promoting brittle fracture [14–16]. Concurrently, 
radiation-enhanced precipitation results in the formation of carbides 
and second-phase particles, which further obstruct dislocation move
ment and contribute to embrittlement [17,18]. Studies have 

Fig. 1. Flowchart of methodology.
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demonstrated that the density and thermal stability of these precipitates 
vary with irradiation temperature and dose, explaining the complex and 
nonlinear nature of DBTT shifts [19–21]. Advanced microstructural 
characterisation techniques, such as atom probe tomography (APT) and 
transmission electron microscopy (TEM), have further revealed that 
dislocation loop morphology changes significantly with irradiation 
conditions, with loop coarsening and annihilation occurring at elevated 
temperatures [7,22,23]. Despite these advancements, a comprehensive 
understanding of DBTT evolution in irradiated RAFM steels remains 
elusive, as multiple microstructural mechanisms interact at different 
length scales.

Experimental studies on DBTT shifts in irradiated RAFM steels are 
hindered by high costs, prolonged irradiation times, and safety con
straints due to the handling of radioactive materials [24]. As a result, 
available experimental datasets are often sparse and limited in scope, 
preventing a holistic understanding of DBTT behaviour across different 
RAFM compositions and irradiation conditions [25]. To address these 
challenges, researchers have sought to develop predictive models for 
estimating radiation-induced DBTT-shift. Early empirical models 
considered microstructural features such as dislocation loop density and 
carbide precipitation [26,27]. However, these methods rely on experi
mental input parameters, such as the density and size of defects and 
precipitates, which are often derived from incomplete datasets, thereby 
restricting their predictive accuracy [28]. Moreover, these approaches 
typically assume homogeneous defect distributions and do not fully 
account for the complex interactions between atomic-scale defects and 
macroscopic fracture behaviour, limiting their applicability in 
real-world scenarios [26–28].

Machine learning (ML), a subset of artificial intelligence, has revo
lutionised data-driven analysis in materials science, offering predictive 
capabilities that are particularly valuable in cases where experimental 
data are scarce or highly variable. Over the past two decades, ML has 
been successfully applied to various challenges in materials research, 
including predicting fracture toughness, optimising heat treatment 
processes, and modelling phase transformations [29–32]. Korotaev 
et al., [33] used a neural network to predict irradiation swelling in 
austenitic steels and proposed alloy optimisation guidelines. Johnson 
et al., [34] used machine learning to predict defect concentrations in 
irradiated materials, reducing computational costs. Zhu et al., [35] 
developed a machine-learning framework to predict complex residual 
stress distributions in laser-welded Eurofer97 steel, enhancing the 
structural reliability of fusion reactor components.

Although ML has been increasingly employed to model irradiation- 
induced embrittlement phenomena, most existing studies focus on 
conventional reactor pressure vessel (RPV) steels, and very few have 
addressed DBTT shifts in RAFM steels. For example, He et al. [36] used 
six ML algorithms, including XGBoost and random forest, to predict 
ΔRTNDT in commercial RPV steels, identifying Cu content and neutron 
fluence as dominant factors. However, their dataset excludes RAFM 
steels and focuses solely on ΔRTNDT rather than actual DBTT. Similarly, 
Lee et al. [37] evaluated Cubist, support vector machine (SVM), and 
XGBoost models using the ASTM E900–15 database and demonstrated 
improved transition temperature shift (TTS) prediction accuracy. 
Nevertheless, their study remains confined to high-Cu steels and con
ventional fission reactor conditions. Xu et al. [38] proposed an 
XGBoost-based TTS model, but their approach does not address RAFM 
compositions or the high-dose irradiation relevant to fusion environ
ments. More recently, Jacobs et al. [39] developed a neural network 
ensemble with uncertainty quantification to predict TTS in RPV steels, 
but their model was not validated for RAFM alloys. Despite the growing 
application of ML in embrittlement modelling, comprehensive 
data-driven studies explicitly addressing DBTT shifts in irradiated RAFM 
steels, especially under fusion-relevant dose and temperature condi
tions, remain scarce.

To address these limitations, this study develops a stacking ensemble 
model integrating XGBoost, Random Forest (RF), Gradient Boosting 

Decision Tree (GBDT), and Multi-Layer Perceptron (MLP) to predict and 
analyse DBTT shifts in irradiated RAFM steels. Through hyperparameter 
optimisation, the proposed framework enhances predictive accuracy 
and mitigates overfitting, ensuring robust generalisation across diverse 
datasets. Additionally, the model is employed to systematically evaluate 
the influence of chemical composition and irradiation conditions on 
DBTT evolution, providing deeper insights into the mechanisms of 
radiation-induced embrittlement in RAFM steels.

2. Computational methodology

The methodology is summarised in the flowchart shown in Fig. 1. 
Initially, a systematic literature review was conducted to compile data 
related to the DBTT, forming a comprehensive dataset. As illustrated in 
the top section of Fig. 1, this dataset comprises 490 data points with 24 
variables, carefully compiled from various academic sources spanning 
1990 to 2024. It includes data on reduced-activation steels such as 
Eurofer97, F82H, OPTIFER, ORNL, JLF, and CLAM. The dataset contains 
21 chemical composition variables, including Niobium (Nb), Nickel 
(Ni), Phosphorus (P), Carbon (C), Chromium (Cr), Tungsten (W), Mo
lybdenum (Mo), Vanadium (V), Silicon (Si), Manganese (Mn), Nitrogen 
(N), Aluminium (Al), Arsenic (As), Boron (B), Cobalt (Co), Copper (Cu), 
Oxygen (O), Titanium (Ti), Zirconium (Zr), and Molybdenum (Mo). 
Additionally, it includes two irradiation-related parameters: Irradiation 
Dose (Dose) and Irradiation Temperature (Tirr), with DBTT as the 
dependent variable. The distributions of some key variables are dis
played in the right-hand section of the data collection panel in Fig. 1. A 
comprehensive description of the dataset, including the data acquisition 
process, is provided in the supplementary material under “Data 
Collection and Description.”

To develop an accurate predictive model for DBTT based on the 
chemical compositions and radiation conditions of RAMF steels, a 
stacking ensemble learning framework was implemented, as shown in 
the second section of Fig. 1. This framework integrates multiple machine 
learning models, XGBoost, RF, GBDT, and MLP, each trained indepen
dently to generate preliminary predictions (P1, P2, P3, and P4). These 
predictions are then fed into a meta-model, which synthesises their 
outputs to generate the final DBTT prediction. This approach leverages 
the strengths of different models, enhancing predictive performance by 
reducing bias and variance.

Following model development, training and validation were con
ducted using statistical metrics, including root mean square error 
(RMSE), mean absolute error (MAE), and coefficient of determination 
(R²). The scatter plot in the left section of the third panel in Fig. 1 pre
sents the comparison between predicted and actual DBTT values for the 
stacking model. The right section of the third panel in Fig. 1 shows the 
feature importance analysis results. The performance comparison of the 
stacking model and its four base models is provided in the supplemen
tary material under “Model Training and Selection.”

Finally, a detailed investigation into the impact of key parameters on 
DBTT was conducted. As depicted in the final section of Fig. 1, polar 
coordinate charts were employed to visualise the effects of irradiation 
dose and temperature, as well as chemical composition variations. 
Additionally, this study utilised SHAP to analyse the synergistic effects 
of elements. This comprehensive analysis provides valuable insights into 
the mechanisms governing radiation-induced embrittlement in RAMF 
steels, supporting material optimisation efforts. Building upon these 
insights, a genetic algorithm was integrated with the machine learning 
model to perform targeted composition optimisation under irradiation 
conditions. The resulting alloy candidates satisfy defined physical con
straints while exhibiting low predicted DBTT values, offering a practical 
path towards the design of irradiation-tolerant RAFM steels. Through 
this structured approach, this research aims to enhance the under
standing of DBTT behaviour in reduced-activation steels, offering 
theoretical guidance for alloy design and performance improvement.
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3. Results and discussion

3.1. Model training

Fig. 2 illustrates the relationship between actual and predicted DBTT 
values obtained using the stacking ensemble model, which combines 
XGBoost, RF, GBDT, and MLP as base learners. The model demonstrates 
high predictive accuracy, achieving RMSE = 14 ◦C, MAE = 8.1 ◦C, and 
R² = 0.96. The tight clustering of data points along the diagonal refer
ence line indicates strong agreement between predicted and actual 
values, confirming the effectiveness of the stacking approach in 
capturing complex, nonlinear relationships within the dataset.

The stacking model outperforms all individual base models, exhib
iting lower prediction errors and higher generalisation capability, which 
can be attributed to its ability to leverage the complementary strengths 
of multiple learners. A detailed performance comparison between the 
stacking model and its base components is provided in the Supplemen
tary Material: Model Comparison.

To quantitatively evaluate the contribution of each base learner 
within the stacking ensemble framework, we extracted the absolute 
coefficients of the final estimator (Ridge regression) after model 
training. These coefficients were normalised and converted to percent
age contributions to reflect the relative importance of each model in 

forming the final prediction.
As shown in Fig. 3, all four base models contributed meaningfully to 

the overall ensemble output, confirming the effectiveness of model di
versity within the stacking framework. Gradient Boosting (GBDT) and 
Random Forest (RF) exhibited the highest contributions, each account
ing for over 30 % of the total influence. XGBoost also played a sub
stantial role (≈19 %), while the Multi-Layer Perceptron (MLP) 
contributed approximately 10 %. Although the MLP model had the 
lowest weight, its inclusion improved ensemble performance by 
capturing complementary, non-tree-based representations of the data. 
This demonstrates that the ensemble benefits from the heterogeneity of 
model architectures and that the stacking approach successfully in
tegrates information from both tree-based and neural models to enhance 
robustness and generalisation across complex irradiation datasets.

3.2. Feature importance analysis

To investigate the contribution of individual input features to the 
stacking ensemble model, a weighted feature importance analysis was 
performed. For the three tree-based base learners (XGBoost, GBDT, and 
Random Forest), feature importance was obtained directly from their 
built-in feature_importances_ attribute. In contrast, the Multi-Layer 
Perceptron (MLP) model does not natively provide such metrics, and 
therefore, permutation importance was calculated based on the reduc
tion in R2 score upon random shuffling of each feature.

To integrate the results from different models, an R2-based weighting 
scheme was adopted. Specifically, each base learner’s R2 score on the 
test set was normalised and used as a weight to combine the feature 
importance vectors. This ensured that the final ensemble-level impor
tance reflects both the internal relevance assigned by each model and its 
predictive strength.

The resulting ranked feature importances are shown in Fig. 4. The 
radiation dose is the most influential feature, followed by Ta, Tirr, W, and 
Cr. The high-ranking factors, Dose, Ta, Tirr, W, and Cr, will be further 
analysed in the Discussion section, where their impact on DBTT shift will 
be examined in detail.

Elements such as Ni, Cu, Al, Co, B, Nb, and Zr exhibit relatively low 
importance in the ranking. This is expected, as these elements are 
strictly limited in low-activation steels [40,41], resulting in minimal 
compositional variations and thus reduced influence on DBTT shifts. 
Additionally, C content remains around 0.1 % across all compositions, 
leading to consistently low variation and subsequently a lower ranking 
in feature importance.

Fig. 2. Stacking model prediction performance for DBTT, indicating a high 
correlation with RMSE = 14 ◦C, MAE = 8.1 ◦C, and R2

=0.96.

Fig. 3. Contribution of each base model to the stacking ensemble, calculated 
using the absolute coefficients of the Ridge final estimator. The contributions 
reflect the relative importance of each base learner (XGBoost, GBDT, RF, and 
MLP) in the overall prediction framework.

Fig. 4. Stacking model Feature Importance for DBTT, indicating radiation Dose 
as the most influential feature, followed by Ta, Tirr, W, and Cr.
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3.3. Effects of radiation temperature and dose

Based on the validation in the previous section, our model demon
strates high accuracy, enabling us to predict and analyse the effects of 
irradiation temperature and dose on the DBTT. To intuitively visualise 
the relationships between these variables, we employ polar coordinate 
charts, which facilitate clear observation and analysis of the impact of 
temperature and dose on DBTT. In these charts, temperature is repre
sented by the angle, increasing clockwise from 0 ◦C to 450 ◦C; irradia
tion dose (dpa) is represented by the radius, extending from the centre (0 
dpa) to the edge (50 dpa); and DBTT ( ◦C) is indicated by the colour 
gradient, ranging from deep blue (lowest DBTT) to dark red (highest 
DBTT), as shown by the legend.

Fig. 5(a) presents the polar coordinate chart of Eurofer97 steel. At 
low doses below 10 dpa and temperatures up to 225 ◦C, the DBTT re
mains low (approximately –50 ◦C to 0 ◦C), indicating good toughness. As 
the irradiation dose increases beyond 30 dpa, especially between 225 ◦C 
and 300 ◦C, the DBTT rises sharply above 100 ◦C, signalling significant 
embrittlement. Above 350 ◦C, a narrow recovery region emerges, with 
DBTT decreasing to 50 ◦C, although this effect is limited to a narrow 
temperature band.

For F82H steel, shown in Fig. 5(b), at doses below 10 dpa and tem
peratures up to 225 ◦C, the DBTT remains very low, with a pronounced 
deep-blue region (<0 ◦C), indicating superior resistance to embrittle
ment. As the dose increases beyond 30 dpa at 225–300 ◦C, the DBTT 

rises moderately, typically to 50–100 ◦C, but does not reach the extreme 
values seen in Eurofer97. At higher temperatures above 350 ◦C, the 
DBTT generally stabilises or slightly declines, although the recovery 
effect is less pronounced compared to Eurofer97.

For OPTIFER steel, shown in Fig. 5(c), the DBTT remains low at doses 
below 10 dpa and temperatures from 75 ◦C to 225 ◦C. However, 
compared to Eurofer97 and F82H, OPTIFER exhibits a much faster DBTT 
increase with rising dose and temperature. At doses exceeding 30 dpa 
across the 0 ◦C–300 ◦C range, DBTT rises above 150 ◦C, indicating severe 
embrittlement. Although there is a minor recovery trend above 350 ◦C, 
the high-temperature, high-dose regions largely remain embrittled, as 
indicated by the persistent red zones.

For ORNL steel, shown in Fig. 5(d), the DBTT is very low (<0 ◦C) at 
doses below 10 dpa and temperatures up to 225 ◦C, indicating excellent 
toughness. As the dose increases beyond 30 dpa and temperatures rise to 
300 ◦C, the DBTT increases, but embrittlement remains less severe 
compared to OPTIFER and Eurofer97. Above 300 ◦C, a broad and clear 
recovery region appears, with DBTT reducing to 0–50 ◦C, highlighting 
the material’s strong thermal recovery capability over a wide tempera
ture range.

It should be noted that the DBTT contours presented in Fig. 5 are 
based on predictions from a machine learning model trained on a large 
and diverse dataset, which includes over 400 data entries extracted from 
published literature and experimental reports. These data span multiple 
RAFM steel grades, irradiation sources, and irradiation conditions. As 

Fig. 5. Polar contour analysis of DBTT variations in four representative Reduced-Activation Ferritic-Martensitic (RAFM) steels under irradiation: (a) Eurofer 97, (b) 
F82H, (c) OPTIFER, and (d) ORNL. Each plot presents a visual representation of DBTT ( ◦C), where the angle corresponds to irradiation temperature ( ◦C) and the 
radius represents dose (dpa).
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such, the contour maps are intended to reflect overall trends in 
embrittlement behaviour, rather than reproducing the outcome of any 
individual experiment.

Although a previous study reported pronounced irradiation-induced 
embrittlement in F82H steels at temperatures below 300 ◦C and low 
doses [42], these results do not universally apply to all processing or 
irradiation conditions. Several other experiments have demonstrated 
that when F82H is properly tempered and irradiated under favourable 
microstructural conditions, the DBTT can remain below 0 ◦C even at 
temperatures around 250 to 300 ◦C. For example, Shiba et al., [43] 
observed a relatively modest increase in DBTT from –50 ◦C to 0 ◦C after 
irradiation at 250 to 265 ◦C with 0.8 dpa, and Jia and Dai [44] reported 
that F82H steel irradiated up to 8.6 dpa at approximately 265 ◦C still 
exhibited a DBTT below –80 ◦C, as measured by small punch testing. 
These findings highlight the substantial variability in embrittlement 
response, which depends not only on irradiation temperature and dose 
but also on steel composition, heat treatment, and initial microstructure.

Therefore, the presence of deep-blue regions in our predicted DBTT 
maps does not imply an absence of irradiation-induced embrittlement. 
Instead, these regions represent comparatively lower DBTT values 
relative to other conditions and other RAFM steels in the dataset. Given 
the statistical nature of the model, the contours reflect data-driven 
generalised behaviour across a wide range of material states and test 

conditions, rather than providing point-by-point matches with any sin
gle experiment. The model’s predictions should thus be interpreted as 
probabilistic trends derived from the overall dataset distribution.

Fig. 5 clearly illustrates that irradiation dose remains the predomi
nant factor influencing the DBTT. Across all four RAFM steels, DBTT 
exhibits a consistent increase with rising irradiation dose, regardless of 
temperature. The influence of radiation dose has been extensively 
studied [8,10,20,45], with findings consistently highlighting its role in 
inducing irradiation-induced defects such as vacancy clusters, disloca
tion loops, helium bubbles, and micro-voids. As radiation dose increases, 
these defects accumulate, progressively impeding grain boundary and 
dislocation movement, which in turn elevates DBTT [21,46,47]. This 
finding aligns well with the predicted results.

In contrast, the influence of irradiation temperature varies among 
different steel types. For Eurofer 97 and F82H, DBTT exhibits a relatively 
modest increase when irradiation temperatures range between 0 ◦C and 
225 ◦C. Previous research suggests that, within this temperature range, 
the dominant irradiation-induced defects in RAFM steels are micro- 
voids, gas bubbles, and small defect clusters [19,48]. At lower temper
atures, these defects initially increase in number but eventually stabilise 
due to the limited diffusion kinetics, thereby exerting a relatively minor 
impact on DBTT. However, as the irradiation temperature exceeds 225 
◦C, defect clusters begin to grow significantly [49,50], leading to a 

Fig. 6. Effect of alloying elements on DBTT in Eurofer97 steels across different temperatures. Each chart provides a visual representation of DBTT ( ◦C), with ra
diation temperature ( ◦C) indicated by angle and element content (wt. %) by radius.
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further increase in DBTT and material embrittlement. Additionally, 
studies indicate that above 225 ◦C, Cr atoms tend to segregate at dis
locations and grain boundaries, further exacerbating DBTT elevation 
[16–18]. Beyond 350 ◦C, high-temperature exposure facilitates defect 
rearrangement and partial annealing recovery [51], allowing martens
itic laths to undergo recovery while simultaneously reducing defect 
density [52]. This microstructural evolution contributes to an 
improvement in ductility, consequently leading to a decrease in DBTT.

3.4. Effects of element content

Based on the results of the variable importance analysis, only Ta, W, 
and Cr have a relative importance greater than 0.1. Therefore, this study 
focuses solely on investigating the effects of Ta, W, and Cr on DBTT. 
Similar to the previous section, polar coordinate charts are used to see 
the effect of element content on the radiation hardening of Eurofer97. In 
these charts, the temperature is represented by the angle, increasing 
clockwise from 0 ◦C to 450 ◦C. The element content (Ta, W, Cr) is rep
resented by the radius, extending from the centre (0 wt. % for Ta and W, 
2 wt. % for Cr) to the edge (0.6 wt. % for Ta, 2.5 wt. % for W, and 10 wt. 
% for Cr). The DBTT ( ◦C) is indicated by the colour scale, ranging from 
deep green (lowest DBTT, improved toughness) to red (highest DBTT, 
severe embrittlement), with the colour legend providing specific values. 
The radiation dose is set to a fixed value of 35 dpa. As the above study 
shows, at this dose level, the degree of radiation hardening is the 
highest, which helps in analysing the effects of elements on radiation 
hardening.

Particular attention was given to the selection of elemental compo
sition ranges in this study, based on both the composition limits typically 
used in RAFM steels and the need to explore potential optimisation 
strategies. For Ta, we extended the range up to 0.6 wt. % because it is 
widely recognised as a beneficial element in RAFM steels, introduced to 
replace Mo and enhance mechanical stability. Moreover, our feature 
importance analysis indicated that Ta has a relatively large contribution 
to the DBTT-shift, further justifying the inclusion of a broader Ta range 
to provide insights for alloy design. For Cr, although some early 
experimental studies included steels with Cr contents exceeding 10 wt. 
%, the compositions currently used in practical RAFM steels generally 
fall within the 2–10 wt. % range. Therefore, we defined the Cr range 
accordingly. Similarly, the W content in practical RAFM steels typically 
remains within the 0–2.5 wt. % range and has already been well studied 
in the literature, and we set the range in line with this practical context. 
These choices were made to ensure that the model reflects both histor
ical data trends and practical alloy design considerations, providing 
meaningful guidance for future material development.

Fig. 6(a) shows a polar coordinate chart of Ta content. The results 
show that DBTT is generally lower at higher Ta contents, particularly at 
elevated irradiation temperatures, where dark green regions become 
more pronounced, indicating improved resistance to embrittlement. At 
lower irradiation temperatures and low Ta concentrations (<0.2 wt. %), 
DBTT remains moderately high (yellow regions), but no extreme red 
zones are observed, indicating that embrittlement is limited even at low 
Ta levels.

The contour plot reveals a relatively consistent trend across all 
temperature ranges, where DBTT decreases gradually with increasing Ta 
content, as indicated by the progressive expansion of green regions. 
Unlike Cr or W, which exhibit distinct temperature-dependent effects, 
Ta appears to provide a relatively uniform benefit in reducing DBTT. 
Researchers have studied the role of Ta in RAFM steels and found that it 
stabilises the microstructure by promoting the formation of fine MX 
precipitates, which mitigate radiation-induced defect accumulation and 

limit the formation of embrittling phases [53,54]. HRTEM observations 
further revealed that, after irradiation, regions containing MX pre
cipitates exhibited a reduced size and density of dislocation loops, 
indicating that Ta effectively suppresses defect evolution and mitigates 
embrittlement [55]. Additionally, Ta influences the stability of 
radiation-induced precipitates such as Laves phase and M₂₃C₆ carbides, 
potentially reducing their detrimental effects on grain boundary 
embrittlement and dislocation mobility [56]. Notably, no significant red 
or orange regions appear in any temperature range, further supporting 
the conclusion that Ta does not contribute to embrittlement even at 
elevated temperatures. These findings indicate that Ta acts as a bene
ficial alloying element in RAFM steels by consistently improving irra
diation resistance and suppressing DBTT across all temperature ranges.

Fig. 6(b) shows a polar coordinate chart of W content, revealing that 
DBTT decreases with increasing W content, with green regions gradually 
expanding even at lower temperatures, unlike in the earlier plot ver
sions. At lower temperatures and low W concentrations (<0.5 wt. %), 
DBTT shows slightly elevated values (yellow zones), but no longer dis
plays extreme red regions, indicating only moderate embrittlement.

The contour plot reveals two distinct temperature-dependent trends 
in the DBTT response to W content. W is a high-temperature resistant 
element, and in RAFM steels, it promotes the precipitation of M₂₃C₆ and 
MX carbides, where M primarily represents W, Cr, and Fe [57,58]. 
Studies have shown that in the 0–300 ◦C range, W enhances micro
structural stability by forming M₂₃C₆ carbides, which suppress grain 
boundary embrittlement, thereby reducing DBTT [49,50]. However, in 
the 300–375 ◦C range, DBTT behaviour varies with W content: it is 
higher in low-W steels and lower in high-W steels. This trend is driven by 
W’s effects on irradiation-induced defects, precipitate formation, and 
solid solution strengthening. In low-W steels, irradiation-induced va
cancies and interstitial clusters tend to aggregate, increasing dislocation 
density and embrittlement, which raises the DBTT [59]. In high-W 
steels, reduced defect mobility mitigates irradiation hardening, 
lowering DBTT [60]. W also affects precipitate evolution. In low-W 
steels, limited Laves phase, Fe₂W [61], formation and increased M₂₃C₆ 
carbide precipitation at grain boundaries cause embrittlement and 
higher DBTT. In high-W steels, Laves phase formation is promoted while 
carbide coarsening is suppressed, reducing DBTT [62]. W also 
strengthens the solid solution and inhibits dislocation climb, improving 
creep resistance and irradiation stability, which further lowers DBTT in 
the 300–375 ◦C range [63].

Fig. 6(c) shows a polar coordinate chart of Cr content, revealing that 
DBTT increases significantly at lower Cr contents (2–4 wt. %), particu
larly in the 150 ◦C–300 ◦C range, where concentrated orange-red regions 
appear, indicating moderate to severe embrittlement. As Cr content in
creases beyond 6 wt. %, DBTT generally decreases, with green areas 
appearing at higher temperatures (>300 ◦C), suggesting improved 
toughness. However, moderate embrittlement persists at mid-range Cr 
levels (4–6 wt. %) and intermediate temperatures (150 ◦C–300 ◦C).

In the 0–150 ◦C range, DBTT remains relatively low across all Cr 
concentrations, similar to W, as Cr promotes the formation of M₂₃C₆ and 
MX carbides, which help maintain structural stability by hindering 
radiation-induced defect accumulation and suppressing grain boundary 
embrittlement [49,50]. Additionally, studies have shown that at low 
temperatures, Cr diffusion is limited, preventing excessive Cr-rich phase 
precipitation and minimising its impact on DBTT [18]. However, in the 
150–300 ◦C range, DBTT increases sharply at moderate Cr concentra
tions (2–6 wt. %), as Cr segregation at grain boundaries intensifies due 
to radiation-induced segregation (RIS), promoting the formation of 
M₂₃C₆ and MX precipitates, which restrict grain boundary mobility and 
dislocation movement, leading to embrittlement [16,17]. At higher 
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temperatures (300–375 ◦C), DBTT continues to rise in Cr-rich regions 
but less significantly above 6 wt. %, likely due to precipitation satura
tion and the onset of vacancy-mediated Cr redistribution, which reduces 
grain boundary enrichment [64]. Additionally, partial defect recovery 
mechanisms, such as grain boundary relaxation and dislocation rear
rangement, may mitigate some of the embrittlement, preventing further 
DBTT escalation [51].

3.5. Elemental interactions

The synergistic interactions between alloying elements are essential 
for optimising material composition. Understanding these interactions 
provides valuable insights for adjusting element concentrations to ach
ieve desirable mechanical properties. In this study, SHAP (SHapley 
Additive exPlanations) dependence plots were utilised to analyse the 
interactions among Cr, Ta, and W, which significantly influence the 
ductile-to-brittle transition temperature (DBTT). Given that the predic
tive model is a stacking regressor incorporating multiple base models, 
including a Multi-Layer Perceptron (MLP), SHAP interaction values 
were computed separately for each base model and subsequently aver
aged. For tree-based models (XGBoost, GBDT, and Random Forest), 
TreeExplainer was employed to extract both SHAP values and interac
tion values. For the MLP, a neural network model, KernelExplainer was 
used to estimate SHAP values. To ensure consistency across models, the 
SHAP values from the MLP were expanded and repeated across features 
prior to averaging with the interaction values from the tree-based 
models. As illustrated in Fig. 7, the SHAP dependence plots 

demonstrate the computed interactions, revealing how Cr, Ta, and W 
collectively influence the DBTT.

Fig. 7(a) depicts the influence of Cr and W on DBTT across different 
concentration ranges. Notably, when Cr = 6 ~ 9 wt. %, high W content 
(>1.5 wt. %) lowers DBTT, suggesting that W contributes to improved 
toughness in this range. The primary mechanism at play here is the solid 
solution strengthening effect of W [65,66], which enhances dislocation 
interactions while suppressing α’ phase precipitation [64,67,68]. Addi
tionally, as Cr concentration remains relatively low in this range, it does 
not significantly promote Laves phase formation, allowing W to pri
marily act as a solid solution strengthening element rather than forming 
embrittling precipitates [69]. Conversely, in the Cr = 9 ~ 12 wt. % 
range, low W content (<1.0 wt. %) increases DBTT, suggesting that 
insufficient W levels promote embrittlement. This may be attributed to 
the diminished solid solution strengthening effect. Furthermore, previ
ous studies have reported that Cr-rich α’ precipitates were not observed 
in 9Cr steels after irradiation but were detected in 12Cr and 13Cr steels 
[70,71], which is known to significantly raise DBTT. This suggests that, 
within the 9–12 wt. % Cr range, increasing Cr content may increase the 
tendency for Cr-rich α’ phase formation. At high Cr concentrations (>9 
wt. %), Cr may also facilitate Laves phase precipitation, which can 
further contribute to embrittlement [72]. In this context, higher W 
concentrations could mitigate these effects by promoting solid solution 
strengthening and stabilising the microstructure, while lower W con
centrations may exacerbate them, leading to increased DBTT.

Fig. 7(b) highlights the interaction between Ta and W in influencing 
DBTT. Across all Ta concentrations, higher W content consistently 

Fig. 7. SHAP Dependence Plots showing the interaction effects of alloying elements as indicated on DBTT. Each chart provides a visual representation of SHAP 
values, with the primary element content (wt. %), SHAP values, and the colour scale representing the interacting element content (wt. %).
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reduces DBTT, while lower W content increases DBTT, with this trend 
becoming more pronounced at lower Ta concentrations (Ta < 0.06). 
This suggests that W plays a more significant role in influencing DBTT 
when Ta levels are insufficient to stabilise the microstructure [53]. 
When W concentration is high (>1.5 wt. %), W primarily enhances solid 
solution strengthening, improving dislocation interactions and reducing 
α’ phase formation [64–66]. Additionally, at low Ta concentrations, 
limited TaC precipitation may further accentuate the strengthening ef
fect of W. Conversely, when W concentration is low (<1.0 wt. %), solid 
solution strengthening is diminished, increasing the likelihood of α’ 
phase precipitation and raising the DBTT [72]. This indicates that at low 
W levels, Cr-induced α’ phase formation may proceed uninhibited, 
thereby exacerbating radiation-induced embrittlement.

Fig. 7(c) illustrates the interaction between Cr and Ta in influencing 
the ductile-to-brittle transition temperature (DBTT). When both Cr and 
Ta concentrations are low (Cr < 6, Ta < 0.06), DBTT is at its highest, 
indicating increased material brittleness in this region. This effect can be 
attributed to the insufficient formation of carbide precipitates (such as 
TaC), which play a critical role in stabilising the microstructure [53]. 
Since both Cr and Ta contribute to carbide formation and microstruc
tural stability, their absence may allow uncontrolled microstructural 
evolution, promoting embrittlement through mechanisms [7,22,54,55]. 
As Cr content exceeds 6 wt. %, DBTT exhibits minimal variation 
regardless of Ta content, indicating that Cr dominates microstructural 
stability while Ta has a limited effect. In this range, Cr effectively pre
vents α’ phase precipitation and enhances solid solution strengthening, 
thereby maintaining a relatively stable DBTT [67,68,72]. This suggests 
that above a threshold level of Cr (>6 wt. %), its strengthening effect is 
sufficient to stabilise the microstructure, reducing the relative impact of 
Ta on DBTT.

3.6. Optimising RAFM compositions

To identify steel compositions with enhanced resistance to 
irradiation-induced embrittlement, a genetic algorithm (GA) was 
employed in combination with the trained stacking ensemble model to 
minimise the predicted ductile-to-brittle transition temperature (DBTT). 
The GA was implemented using the DEAP framework, with a population 
size of 100 evolved over 120 generations. Blend crossover (α = 0.5) and 
Gaussian mutation (σ = 0.1, mutation probability = 0.4) were applied, 
together with tournament selection (size = 3). The ten best-performing 
individuals were retained through a Hall of Fame strategy.

The optimisation was conducted under realistic service conditions, 
with Tirr constrained to 250–350 ◦C, which corresponds to the 
embrittlement-dominated regime observed in RAFM steels, as clearly 
illustrated in Fig. 5. The irradiation dose was fixed at 10 dpa, a repre
sentative mid-dose level that lies within the range of available experi
mental data and coincides with the transition region where DBTT tends 
to increase sharply. Moreover, this value is well represented in the 
training dataset, ensuring reliable model predictions during optimisa
tion. The DBTT was constrained to the range of − 50 to +50 ◦C, which is 
generally considered acceptable for avoiding brittle failure in structural 
applications.

To ensure physical feasibility and nuclear compatibility, the 
composition search space excluded high activation elements such as Ni, 
Co and Mo [41,73], which were fixed to zero. All other alloying elements 
were allowed to vary within physically meaningful ranges to ensure 
metallurgical feasibility and maintain low-activation characteristics. 
This ensures that the generated compositions meet irradiation tolerance 
targets and comply with reduced-activation criteria.

The optimisation yielded a set of candidate compositions that meet 
all constraints and achieve low predicted DBTT values. Two represen
tative solutions, presented in Table 1, demonstrate the effectiveness of 
the proposed approach and offer practical guidance for the design of 
irradiation-tolerant RAFM steels.

4. Conclusion

This study developed a stacking ensemble machine learning model to 
predict the DBTT in irradiated reduced-activation ferritic/martensitic 
(RAFM) steels. By integrating XGBoost, Random Forest, GBDT, and MLP 
models, the ensemble achieved high predictive accuracy (R² = 0.96), 
significantly outperforming individual models. The stacking framework 
effectively mitigates overfitting and enhances generalisation, making it 
a robust tool for analysing radiation-induced embrittlement trends. The 
results demonstrate a strong dependency of DBTT on both irradiation 
dose and temperature. Specifically, DBTT increases markedly beyond 30 
dpa due to defect accumulation, dislocation pinning, and precipitation 
evolution. A nonlinear temperature response was observed, with DBTT 
rising between 150 and 300 ◦C owing to radiation-enhanced segregation 
and the precipitation of M₂₃C₆, MX, and Laves phases. However, tem
peratures above 350 ◦C promote defect recovery and grain boundary 
relaxation, leading to a reduction in DBTT and an improvement in 
ductility. The effects of alloying elements were systematically explored, 
revealing that tantalum reduces embrittlement by stabilising MX pre
cipitates and suppressing defect build-up. Tungsten improves radiation 
resistance at high doses (>40 dpa) by enhancing microstructural sta
bility, while chromium exhibits a dual effect: moderate levels (4–6 wt. 
%) increase DBTT due to radiation-induced segregation, whereas higher 
concentrations (>6 wt. %) lower DBTT at elevated temperatures via 
defect redistribution and carbide stabilisation. SHAP analysis further 
elucidated these interactions, showing that tungsten reduces DBTT 
through solid solution strengthening, particularly at moderate chro
mium (6–9 wt. %) and low tantalum content. Chromium’s dual role was 
reaffirmed, with low Cr and Ta levels leading to increased DBTT, while 
higher Cr (>6 wt. %) contributes to stabilisation by controlling micro
structural evolution. Based on these insights, a genetic algorithm was 
applied to optimise chemical compositions under defined irradiation 
conditions. The resulting alloys satisfied key constraints on temperature, 
dose, and embrittlement, demonstrating the model’s capability to pre
dict DBTT and to guide practical alloy design. Collectively, these find
ings provide valuable insights into the complex interplay between 
composition, irradiation conditions, and embrittlement, underscoring 
the transformative potential of machine learning as a computationally 
efficient approach for predicting and mitigating irradiation-induced 
embrittlement in RAFM steels.
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P. Wang and G.M.A.M. El-Fallah                                                                                                                                                                                                           Journal of Nuclear Materials 615 (2025) 155984 

9 



the work reported in this paper.

Acknowledgements

All authors gratefully acknowledge the support from Nanjing Iron & 
Steel United Co., Ltd. (NISCO), particularly for providing a PhD. 
Scholarship for this study.

Supplementary materials

Supplementary material associated with this article can be found, in 
the online version, at doi:10.1016/j.jnucmat.2025.155984.

References

[1] N. Baluc, et al., Status of reduced activation ferritic/martensitic steel development, 
J. Nucl. Mater. 367-370 (2007) 33–41, https://doi.org/10.1016/j. 
jnucmat.2007.03.036.

[2] A. Bhattacharya, et al., Irradiation hardening and ductility loss of Eurofer97 steel 
variants after neutron irradiation to ITER-TBM relevant conditions, Fusion Eng. 
Des. (2021) 173, https://doi.org/10.1016/j.fusengdes.2021.112935.

[3] O. Anderoglu, et al., Mechanical performance of ferritic martensitic steels for high 
dose applications in advanced nuclear reactors, Metallurg. Mater. Trans. A 44 
(2012) 70–83, https://doi.org/10.1007/s11661-012-1565-y.

[4] C. Cabet, et al., Ferritic-martensitic steels for fission and fusion applications, 
J. Nucl. Mater. 523 (2019) 510–537, https://doi.org/10.1016/j. 
jnucmat.2019.05.058.

[5] E. Gaganidze, et al., Mechanical properties and TEM examination of RAFM steels 
irradiated up to 70dpa in BOR-60, J. Nucl. Mater. 417 (2011) 93–98, https://doi. 
org/10.1016/j.jnucmat.2010.12.047.

[6] M. Rieth, et al., Technological aspects in blanket design: effects of micro-alloying 
and thermo-mechanical treatments of EUROFER97 type steels after neutron 
irradiation, Fusion Eng. Des. (2021) 168, https://doi.org/10.1016/j. 
fusengdes.2021.112645.

[7] S. Rogozhkin, et al., Evolution of microstructure in advanced ferritic-martensitic 
steels under irradiation: the origin of low temperature radiation embrittlement, 
MRS Adv 2 (2016) 1143–1155, https://doi.org/10.1557/adv.2016.657.

[8] J. Knaster, A. Moeslang, T. Muroga, Materials research for fusion, Nat. Phys. 12 
(2016) 424–434, https://doi.org/10.1038/nphys3735.

[9] Y. Dai, et al., Neutron/proton irradiation and He effects on the microstructure and 
mechanical properties of ferritic/martensitic steels T91 and EM10, J. Nucl. Mater. 
415 (2011) 306–310, https://doi.org/10.1016/j.jnucmat.2011.04.029.

[10] M. Kiritani, Defect structure evolution from radiation damage with D-T fusion 
neutrons, J. Nucl. Mater. 133-134 (1985) 85–91, https://doi.org/10.1016/0022- 
3115(85)90116-3.

[11] T. Zhang, et al., Irradiation-induced evolution of mechanical properties and 
microstructure of Eurofer 97, J. Nucl. Mater. 450 (2014) 48–53, https://doi.org/ 
10.1016/j.jnucmat.2013.12.007.

[12] R.L. Klueh, K. Shiba, M.A. Sokolov, Embrittlement of irradiated ferritic/martensitic 
steels in the absence of irradiation hardening, J. Nucl. Mater. 377 (2008) 427–437, 
https://doi.org/10.1016/j.jnucmat.2008.04.002.

[13] S.H. Song, et al., Small punch test evaluation of neutron-irradiation-induced 
embrittlement of a Cr–Mo low-alloy steel, Mater. Charact. 53 (2004) 35–41, 
https://doi.org/10.1016/j.matchar.2004.07.006.

[14] S.H. Song, et al., Irradiation-induced embrittlement of a 2.25Cr1Mo steel, J. Nucl. 
Mater. 280 (2000) 162–168, https://doi.org/10.1016/S0022-3115(00)00042-8.

[15] Y. Nishiyama, et al., Effects of neutron-irradiation-induced intergranular 
phosphorus segregation and hardening on embrittlement in reactor pressure vessel 
steels, Acta Mater. 56 (2008) 4510–4521, https://doi.org/10.1016/j. 
actamat.2008.05.026.

[16] D. Terentyev, A. Bakaev, Radiation-induced strengthening and absorption of 
dislocation loops in ferritic Fe-Cr alloys: the role of Cr segregation, J. Phys. 
Condens Matter 25 (2013) 265702, https://doi.org/10.1088/0953-8984/25/26/ 
265702.

[17] Z. Jiao, G.S. Was, Segregation behavior in proton- and heavy-ion-irradiated 
ferritic–martensitic alloys, Acta Mater. 59 (2011) 4467–4481, https://doi.org/ 
10.1016/j.actamat.2011.03.070.

[18] L.D. Xia, et al., Radiation induced grain boundary segregation in ferritic/ 
martensitic steels, Nucl. Eng. Technol. 52 (2020) 148–154, https://doi.org/ 
10.1016/j.net.2019.07.009.

[19] H. Tanigawa, et al., Irradiation effects on precipitation and its impact on the 
mechanical properties of reduced-activation ferritic/martensitic steels, J. Nucl. 
Mater. 367-370 (2007) 42–47, https://doi.org/10.1016/j.jnucmat.2007.03.167.

[20] L. Tan, et al., Recent status and improvement of reduced-activation ferritic- 
martensitic steels for high-temperature service, J. Nucl. Mater. 479 (2016) 
515–523, https://doi.org/10.1016/j.jnucmat.2016.07.054.

[21] R. Coppola, M. Klimenkov, Dose dependence of micro-voids distributions in low- 
temperature neutron irradiated Eurofer97 steel, Metals 9 (2019), https://doi.org/ 
10.3390/met9050552.

[22] M. Johnson, et al., Irradiation-induced microstructure and microchemistry effects 
on mechanical properties in ferritic-martensitic alloys, Materialia 20 (2021), 
https://doi.org/10.1016/j.mtla.2021.101228.

[23] V. Kuksenko, et al., Effect of neutron-irradiation on the microstructure of a 
Fe–12at.%Cr alloy, J. Nucl. Mater. 415 (2011) 61–66, https://doi.org/10.1016/j. 
jnucmat.2011.05.042.

[24] S.J. Zinkle, et al., Fusion materials science and technology research opportunities 
now and during the ITER era, Fusion Eng. Des. 89 (2014) 1579–1585, https://doi. 
org/10.1016/j.fusengdes.2014.02.048.

[25] A.A.F. Tavassoli, et al., Current status and recent research achievements in ferritic/ 
martensitic steels, J. Nucl. Mater. 455 (2014) 269–276, https://doi.org/10.1016/j. 
jnucmat.2014.06.017.

[26] B.-S. Lee, et al., Master curve techniques to evaluate an irradiation embrittlement 
of nuclear reactor pressure vessels for a long-term operation, Int. J. Press. Vessels 
Pip. 85 (2008) 593–599, https://doi.org/10.1016/j.ijpvp.2007.08.005.

[27] R. Moskovic, et al., A bayesian analysis of the influence of neutron irradiation on 
embrittlement in ferritic submerged arc weld metal, Metallurg. Mater. Trans. A 31 
(2000) 445–459, https://doi.org/10.1007/s11661-000-0281-1.

[28] S. Kotrechko, Y. Meshkov, A new approach to estimate irradiation embrittlement of 
pressure vessel steels, Int. J. Press. Vessels Pip. 85 (2008) 336–343, https://doi. 
org/10.1016/j.ijpvp.2007.10.012.

[29] Y. Zou, et al., Machine learning-assisted prediction and interpretation of 
electrochemical corrosion behavior in high-entropy alloys, Comput. Mater. Sci 244 
(2024) 113259, https://doi.org/10.1016/j.commatsci.2024.113259.

[30] C. Herriott, A.D. Spear, Predicting microstructure-dependent mechanical 
properties in additively manufactured metals with machine- and deep-learning 
methods, Comput. Mater. Sci 175 (2020) 109599, https://doi.org/10.1016/j. 
commatsci.2020.109599.

[31] X. Huang, et al., Study on time-temperature-transformation diagrams of stainless 
steel using machine-learning approach, Comput. Mater. Sci 171 (2020) 109282, 
https://doi.org/10.1016/j.commatsci.2019.109282.

[32] P. Wang, et al., Advanced machine learning analysis of radiation hardening in 
reduced-activation ferritic/martensitic steels, Comput. Mater. Sci 251 (2025) 
113773, https://doi.org/10.1016/j.commatsci.2025.113773.

[33] P. Korotaev, A. Yanilkin, Neural networks for prediction of swelling in austenitic 
steels irradiated by fast neutrons, Comput. Mater. Sci 246 (2025), https://doi.org/ 
10.1016/j.commatsci.2024.113408.

[34] L. Johnson, et al., Machine learning method to determine concentrations of 
structural defects in irradiated materials, Comput. Mater. Sci 242 (2024), https:// 
doi.org/10.1016/j.commatsci.2024.113079.

[35] B. Zhu, et al., Machine learning powered predictive modelling of complex residual 
stress for nuclear fusion reactor design, Mater. Des. 248 (2024), https://doi.org/ 
10.1016/j.matdes.2024.113449.

[36] W.-k. He, et al., Study on irradiation embrittlement behavior of reactor pressure 
vessels by machine learning methods, Ann. Nucl. Energy 192 (2023), https://doi. 
org/10.1016/j.anucene.2023.109965.

[37] G.-G. Lee, M.-C. Kim, B.-S. Lee, Machine learning modeling of irradiation 
embrittlement in low alloy steel of nuclear power plants, Nucl. Eng. Technol. 53 
(2021) 4022–4032, https://doi.org/10.1016/j.net.2021.06.014.

[38] C. Xu, et al., A study of predicting irradiation-induced transition temperature shift 
for RPV steels with XGBoost modeling, Nucl. Eng. Technol. 53 (2021) 2610–2615, 
https://doi.org/10.1016/j.net.2021.02.015.

[39] R. Jacobs, et al., Predictions and uncertainty estimates of reactor pressure vessel 
steel embrittlement using machine learning, Mater. Des. 236 (2023), https://doi. 
org/10.1016/j.matdes.2023.112491.

[40] G.J. Butterworth, Low activation structural materials for fusion, Fusion Eng. Des. 
11 (1989) 231–244, https://doi.org/10.1016/0920-3796(89)90021-5.

[41] T. Noda, et al., Materials selection for reduced activation of fusion reactors, J. Nucl. 
Mater. 155-157 (1988) 581–584, https://doi.org/10.1016/0022-3115(88)90375- 
3.

[42] J. Rensman, et al., Characteristics of unirradiated and 60 C, 2.7 dpa irradiated 
Eurofer97, J. Nucl. Mater. 307 (2002) 250–255, https://doi.org/10.1016/S0022- 
3115(02)01036-X.

[43] K. Shiba, A. Hishinuma, Low-temperature irradiation effects on tensile and charpy 
properties of low-activation ferritic steels, J. Nucl. Mater. 283-287 (2000) 
474–477, https://doi.org/10.1016/S0022-3115(00)00369-X.

[44] X. Jia, Y. Dai, Small punch tests on martensitic/ferritic steels F82H, T91 and 
Optimax-A irradiated in SINQ Target-3, J. Nucl. Mater. 323 (2003) 360–367, 
https://doi.org/10.1016/j.jnucmat.2003.08.018.

[45] M. Kolluri, et al., A structure–property correlation study of neutron irradiation 
induced damage in EU batch of ODS Eurofer97 steel, Mater. Sci. Eng. A 597 (2014) 
111–116, https://doi.org/10.1016/j.msea.2013.12.074.

[46] Y. Zheng, et al., Variation of radiation damage with irradiation temperature and 
dose in CLAM steel, Plasma Sci. Technol. 14 (2012) 629–631, https://doi.org/ 
10.1088/1009-0630/14/7/14.

[47] C. Zheng, et al., Microstructure response of ferritic/martensitic steel HT9 after 
neutron irradiation: effect of dose, J. Nucl. Mater. 523 (2019) 421–433, https:// 
doi.org/10.1016/j.jnucmat.2019.06.019.

[48] R. Kasada, et al., Effects of varying temperature irradiation on the neutron 
irradiation hardening of reduced-activation 9Cr–2W martensitic steels, J. Nucl. 
Mater. 271-272 (1999) 360–364, https://doi.org/10.1016/S0022-3115(98)00749- 
1.

[49] X. Jia, Y. Dai, M. Victoria, The impact of irradiation temperature on the 
microstructure of F82H martensitic/ferritic steel irradiated in a proton and neutron 
mixed spectrum, J. Nucl. Mater. 305 (2002) 1–7, https://doi.org/10.1016/S0022- 
3115(02)00916-9.

[50] X. Jia, Y. Dai, Microstructure in martensitic steels T91 and F82H after irradiation in 
SINQ Target-3, J. Nucl. Mater. 318 (2003) 207–214, https://doi.org/10.1016/ 
S0022-3115(03)00101-6.

P. Wang and G.M.A.M. El-Fallah                                                                                                                                                                                                           Journal of Nuclear Materials 615 (2025) 155984 

10 

https://doi.org/10.1016/j.jnucmat.2025.155984
https://doi.org/10.1016/j.jnucmat.2007.03.036
https://doi.org/10.1016/j.jnucmat.2007.03.036
https://doi.org/10.1016/j.fusengdes.2021.112935
https://doi.org/10.1007/s11661-012-1565-y
https://doi.org/10.1016/j.jnucmat.2019.05.058
https://doi.org/10.1016/j.jnucmat.2019.05.058
https://doi.org/10.1016/j.jnucmat.2010.12.047
https://doi.org/10.1016/j.jnucmat.2010.12.047
https://doi.org/10.1016/j.fusengdes.2021.112645
https://doi.org/10.1016/j.fusengdes.2021.112645
https://doi.org/10.1557/adv.2016.657
https://doi.org/10.1038/nphys3735
https://doi.org/10.1016/j.jnucmat.2011.04.029
https://doi.org/10.1016/0022-3115(85)90116-3
https://doi.org/10.1016/0022-3115(85)90116-3
https://doi.org/10.1016/j.jnucmat.2013.12.007
https://doi.org/10.1016/j.jnucmat.2013.12.007
https://doi.org/10.1016/j.jnucmat.2008.04.002
https://doi.org/10.1016/j.matchar.2004.07.006
https://doi.org/10.1016/S0022-3115(00)00042-8
https://doi.org/10.1016/j.actamat.2008.05.026
https://doi.org/10.1016/j.actamat.2008.05.026
https://doi.org/10.1088/0953-8984/25/26/265702
https://doi.org/10.1088/0953-8984/25/26/265702
https://doi.org/10.1016/j.actamat.2011.03.070
https://doi.org/10.1016/j.actamat.2011.03.070
https://doi.org/10.1016/j.net.2019.07.009
https://doi.org/10.1016/j.net.2019.07.009
https://doi.org/10.1016/j.jnucmat.2007.03.167
https://doi.org/10.1016/j.jnucmat.2016.07.054
https://doi.org/10.3390/met9050552
https://doi.org/10.3390/met9050552
https://doi.org/10.1016/j.mtla.2021.101228
https://doi.org/10.1016/j.jnucmat.2011.05.042
https://doi.org/10.1016/j.jnucmat.2011.05.042
https://doi.org/10.1016/j.fusengdes.2014.02.048
https://doi.org/10.1016/j.fusengdes.2014.02.048
https://doi.org/10.1016/j.jnucmat.2014.06.017
https://doi.org/10.1016/j.jnucmat.2014.06.017
https://doi.org/10.1016/j.ijpvp.2007.08.005
https://doi.org/10.1007/s11661-000-0281-1
https://doi.org/10.1016/j.ijpvp.2007.10.012
https://doi.org/10.1016/j.ijpvp.2007.10.012
https://doi.org/10.1016/j.commatsci.2024.113259
https://doi.org/10.1016/j.commatsci.2020.109599
https://doi.org/10.1016/j.commatsci.2020.109599
https://doi.org/10.1016/j.commatsci.2019.109282
https://doi.org/10.1016/j.commatsci.2025.113773
https://doi.org/10.1016/j.commatsci.2024.113408
https://doi.org/10.1016/j.commatsci.2024.113408
https://doi.org/10.1016/j.commatsci.2024.113079
https://doi.org/10.1016/j.commatsci.2024.113079
https://doi.org/10.1016/j.matdes.2024.113449
https://doi.org/10.1016/j.matdes.2024.113449
https://doi.org/10.1016/j.anucene.2023.109965
https://doi.org/10.1016/j.anucene.2023.109965
https://doi.org/10.1016/j.net.2021.06.014
https://doi.org/10.1016/j.net.2021.02.015
https://doi.org/10.1016/j.matdes.2023.112491
https://doi.org/10.1016/j.matdes.2023.112491
https://doi.org/10.1016/0920-3796(89)90021-5
https://doi.org/10.1016/0022-3115(88)90375-3
https://doi.org/10.1016/0022-3115(88)90375-3
https://doi.org/10.1016/S0022-3115(02)01036-X
https://doi.org/10.1016/S0022-3115(02)01036-X
https://doi.org/10.1016/S0022-3115(00)00369-X
https://doi.org/10.1016/j.jnucmat.2003.08.018
https://doi.org/10.1016/j.msea.2013.12.074
https://doi.org/10.1088/1009-0630/14/7/14
https://doi.org/10.1088/1009-0630/14/7/14
https://doi.org/10.1016/j.jnucmat.2019.06.019
https://doi.org/10.1016/j.jnucmat.2019.06.019
https://doi.org/10.1016/S0022-3115(98)00749-1
https://doi.org/10.1016/S0022-3115(98)00749-1
https://doi.org/10.1016/S0022-3115(02)00916-9
https://doi.org/10.1016/S0022-3115(02)00916-9
https://doi.org/10.1016/S0022-3115(03)00101-6
https://doi.org/10.1016/S0022-3115(03)00101-6


[51] E. Materna-Morris, et al., Effect of helium on tensile properties and microstructure 
in 9%Cr–WVTa–steel after neutron irradiation up to 15dpa between 250 and 
450◦C, J. Nucl. Mater. 386-388 (2009) 422–425, https://doi.org/10.1016/j. 
jnucmat.2008.12.157.

[52] M. Klimenkov, et al., Correlation of microstructural and mechanical properties of 
neutron irradiated EUROFER97 steel, J. Nucl. Mater. (2020) 538, https://doi.org/ 
10.1016/j.jnucmat.2020.152231.

[53] X. Xiao, et al., Effect of V and Ta on the precipitation behavior of 12 %Cr reduced 
activation ferrite/martensite steel, Mater. Charact. 82 (2013) 130–139, https:// 
doi.org/10.1016/j.matchar.2013.05.006.

[54] X. Xiao, et al., Microstructure stability of V and Ta microalloyed 12 %Cr reduced 
activation ferrite/martensite steel during long-term aging at 650◦C, J. Mater. Sci. 
Technol. 31 (2015) 311–319, https://doi.org/10.1016/j.jmst.2013.04.028.

[55] P.P. Liu, et al., Effects of carbide precipitate on the mechanical properties and 
irradiation behavior of the low activation martensitic steel, J. Alloys Compd. 579 
(2013) 599–605, https://doi.org/10.1016/j.jallcom.2013.07.085.

[56] L. Tan, W. Zhong, and T. Chen, Microstructural stability of tantalum-alloyed 
ferritic-martensitic steel with neutron irradiation to 7.4 dpa at ~490 ◦C, 
Materialia, 9 (2020). https://doi.org/10.1016/j.mtla.2020.100608.

[57] P. Fernández, et al., Creep strength of reduced activation ferritic/martensitic steel 
Eurofer’97, Fusion Eng. Des. 75-79 (2005) 1003–1008, https://doi.org/10.1016/j. 
fusengdes.2005.06.085.

[58] S. Yin, et al., Stabilities of the precipitates in CLAM steel during 30,000 h thermal 
aging, J. Nucl. Mater. 567 (2022) 153805, https://doi.org/10.1016/j. 
jnucmat.2022.153805.

[59] R.O. Kaybyshev, V.N. Skorobogatykh, I.A. Shchenkova, New martensitic steels for 
fossil power plant: creep resistance, Phys. Metals Metallogr. 109 (2010) 186–200, 
https://doi.org/10.1134/s0031918x10020110.

[60] F. Abe, Effect of fine precipitation and subsequent coarsening of Fe2W laves phase 
on the creep deformation behavior of tempered martensitic 9Cr-W steels, 
Metallurg. Mater. Trans. A 36 (2005) 321–332, https://doi.org/10.1007/s11661- 
005-0305-y.

[61] C. Mao, et al., Revealing the stabilization mechanism of coupling effect of Ta/Zr on 
M23C6 and laves precipitations in low-carbon 9Cr ferrite/martensite (F/M) steels: 
experiment and ab initio molecular dynamics, Metallurg. Mater. Trans. A 55 
(2024) 5070–5089, https://doi.org/10.1007/s11661-024-07599-y.

[62] M. Taneike, K. Sawada, F. Abe, Effect of carbon concentration on precipitation 
behavior of M23C6 carbides and MX carbonitrides in martensitic 9Cr steel during 

heat treatment, Metallurg. Mater. Trans. A 35 (2004) 1255–1262, https://doi.org/ 
10.1007/s11661-004-0299-x.

[63] P.J. Ennis, A. Czyrska-Filemonowicz, Recent advances in creep-resistant steels for 
power plant applications, Sadhana 28 (2003) 709–730, https://doi.org/10.1007/ 
BF02706455.
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